
Fig. 2. Reconstructions from 64 radial views. 
Regular radial data reconstructed with (a) NUFFT 
(b) CS. Randomly perturbed radial data 
corresponding to slew rates (c) 150 (d) 375 (e) 
750 (f) 1500 T/m/s reconstructed with CS. 

 
Fig. 1. (a) Regular (b) Randomly 
perturbed radial trajectory. 

(a) 

Randomly Perturbed Radial  Trajectories for Compressed Sensing MRI 
 

A. Bilgin1,2, T. P. Trouard2,3, A. F. Gmitro2,4, and M. I. Altbach2 
1Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States, 2Radiology, University of Arizona, Tucson, AZ, United States, 3Biomedical 

Engineering, University of Arizona, Tucson, AZ, United States, 4Optical Sciences Center, University of Arizona, Tucson, AZ, United States 
 

Introduction: The recently introduced Compressed Sensing (CS) theory illustrates that a small number of random linear measurements can be 
sufficient to reconstruct sparse or compressible signals [1,2,3]. Since the number of measurements necessary for perfect reconstruction using the CS 
theory can be drastically smaller than the number of measurements required by the Nyquist sampling theory, CS has the potential to significantly 

accelerate data acquisition in MRI [4-10].  Although the initial CS theory was based on completely random sampling, 
it was later suggested that such random sampling may not always be necessary [11]. More specifically, recent results 
indicate that CS methods can yield exact recovery if the sparsity basis and the measurement basis obey the uniform 
uncertainty principle and are incoherent [11]. This pertains to MRI since complete random sampling is difficult to 
achieve with existing hardware. Earlier work in CS for MRI explored strategies for randomizing measurements for 
spirals [4] and 3DFT trajectories [5]. Recently, reconstructions from CS MRI data acquired on regular radial 
trajectories were demonstrated [7-10]. While the CS reconstruction of undersampled regular radial data resulted in 
significant reduction of streaking artifacts, compared to filtered backprojection or regridding, we demonstrate here that 
further improvements are possible by randomly perturbing the radial trajectories. 
 

Theory: Let f  be an N-dimensional vector representing the object being imaged, M  the KxN measurement matrix, 
and g  a K-dimensional vector of measurements (where K << N). In MRI, M  is an undersampled Fourier matrix and g  

is the measured k-space data such that =g Mf . Furthermore, let Ψ  denote the NxN transform matrix such that Ψf is 

sparse (i.e. Ψf has only S  non-zero values where S << N). CS theory suggests that f  can be recovered by solving the convex optimization problem 

1
min

f
Ψf  subject to 

2
ε− <Mf g    

whereε  controls the fidelity between the measurements and the reconstruction and is used to account 
for noise in the measurements. It has also been shown that the number of measurements K necessary for 
successful recovery of the S sparse coefficients depends on the coherence between the measurement and 
sparsity bases [11,12]. The more incoherent the measurement and sparsity bases, the fewer 
measurements are needed for reconstruction. Measurements obtained on regular grids can result in 
coherent undersampling artifacts in the sparsity domain and, thus, more measurements may be needed 
for successful reconstruction. Equivalently, between two systems with the same number of 
measurements, the one with the higher amount of incoherence will recover more sparsity domain 
coefficients and, thus, will result in higher image quality. 
 

Method: We propose randomly perturbed radial trajectories for increased incoherence in radial CS 
MRI. A regular radial trajectory is illustrated in Fig. 1a, and a randomly perturbed radial trajectory is 
illustrated in Fig. 1b. The random perturbations occur in the azimuthal direction. The amount of 
azimuthal deviation is dependent on the gradient slew rate of the MRI system. Higher slew rates enable 
larger deviations which result in more incoherent measurements. In our experiments, we took an image 
which was originally acquired using 256 regular radial views and 256 points along each radial view 
using a FSE pulse sequence. Using this image, we created undersampled datasets by only keeping 
partial data in k-space. We first took k-space samples along 64 regular radial lines and reconstructed 
this data set using both non-uniform FFT (NUFFT) and CS. We then created partial k-space data sets 
with random azimuthal perturbations along 64 radial views. We calculated the radial sampling stepsize 
Δkr for FOV = 24 cm, and randomly perturbed the trajectories by mΔkr where m was selected to 
correspond to different gradient slew rates and BW = 64 KHz. In our experiments, we used orthogonal 
wavelets as well as finite differences (total variation) for sparsity. 
 
Results and Discussion: Fig. 2 shows images obtained using different reconstruction algorithms and 
different radial trajectories. Figs. 2a and 2b illustrate the images reconstructed using NUFFT and CS 
from 64 regular radial views, respectively. Note that while the CS reconstruction has reduced 
undersampling artifacts significantly, there are some residual streaks in the image (pointed to by the 

arrows). Images reconstructed using CS from 64 randomly perturbed radial lines are shown in Figs. 2c-2f for slew rates, 150 T/m/s, 375 T/m/s, 750 
T/m/s, and 1500 T/m/s, respectively. Notice that the increased azimuthal perturbations result in removal of the residual artifacts without sacrifice of 
spatial resolution.  
 
Conclusion: We illustrated that randomly perturbed radial trajectories can reduce artifacts in CS MRI. Fast gradients slew rates available in modern 
MRI systems enable such perturbations. 
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