
Figure 2:  Representative HYPR MIPS of the data described in Table 1. 
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Introduction: 

The use of highly constrained backprojection (HYPR) [1] in time-resolved contrast-enhanced MR angiography (CE-MRA) allows for a dramatic increase in the 
reconstructed temporal frame rate without the normal penalties in SNR and/or spatial resolution. Unfortunately, the increase in the computational requirements and data 
throughput can result in long reconstruction times, reducing the clinical viability of the technique. One approach to achieve shorter reconstruction times is to detect 
contrast dynamics from the k-space data and tailor the reconstruction to start with the contrast arrival and to reduce the temporal resolution during the venous phase [2], 
but even with the use of this technique typical reconstruction times still require minutes to hours to process a single dynamic 3D dataset. 

In the past, clusters of networked computers have been used to solve computationally intensive problems that were impractical using a single computer. The 
degree of acceleration achieved usually depends on the complexity of the communication between the processes, on the memory necessary to perform the operations, 
and on the partitioning of the problem among the members of the cluster. We demonstrate a method that takes advantage of a distributed computing environment to 
efficiently accelerate HYPR reconstructions, achieving a degree of acceleration close to the number of computing nodes included in the cluster. 
Methods: 

Healthy volunteers were scanned on a clinical 3.0 T system (Signa HDx, GE Healthcare, Waukesha, WI). A hybrid 3D stack-of-stars [3] trajectory was used for 
acquisition of extremity and head CE-MRA data.   An optimized HYPR reconstruction consisted of the following steps:  (a) An FFT was applied along the slice 
direction of the data, then data were partitioned to compute nodes on a slice-by-slice basis. (b) For each slice, an FFT was applied to each partial-echo projection and 
homodyne correction [4] was applied to the sinogram before transforming the data back to k-space.  (c) An efficient gridding algorithm [5] was applied, with anti-Gibbs 
ringing apodization incorporated directly into the density compensation function for optimal efficiency.  (d) The HYPR algorithm [1] was applied in k-space to each 

slice, with typical reconstruction parameters of 16 new projections per frame and a 
sliding composite of 256 total projections.  Each HYPR dataset was reconstructed 
using one to eight of the compute nodes of the scanner’s reconstruction hardware.  
Reconstruction times were recorded in all cases and the corresponding images from 
each reconstruction were compared.    
Results:  

The reconstruction times with the acquisition parameters are presented in Table 
1. Figure 1 shows that normalized reconstruction time scales as the inverse of the 
number of nodes used during the reconstruction, independently of the acquisition’s 
characteristics such as size of the coil array and matrix size. Figure 2 shows 
representative images of several of the reconstructed datasets.  
Discussion and Conclusions: 

HYPR MRA can produce temporal resolution up to a 100 times greater than 
traditional CE-MRA methods [6, 7]. However, the large data volumes and increased 
computational complexity prolong reconstruction times and increase data management 
and storage requirements, making routine use challenging in clinical practice. The 
proposed distributed HYPR reconstruction reduces the computation time by a factor 
close to the number of compute nodes available for processing. The hybrid 3D stack-
of-stars acquisition is well suited for distributed processing. Each slice can be 
processed separately and there is minimal communication necessary for the 
synchronization of the processes.  The addition of techniques to accelerate the 
acquisition such as parallel imaging or the use of different trajectories, such as VIPR 
[8], will increase the level of complexity of the reconstruction algorithm. An increase 
in the number of channels used for acquisition might also add to the complexity if the 
memory associated with a single processor is unable to hold all the required data. 
Further investigation is necessary to determine the performance of the algorithm under 
these conditions in a distributed computing environment.  While the reconstruction 
times monotonically decrease with number of nodes (Fig. 1), the marginal benefit of 
adding compute nodes diminishes as the number of nodes increases.  The optimal 
number of nodes would be dependent on specific acquisition parameters.   

An optimized and distributed HYPR reconstruction enables the clinical 
application of the technique. Adding compute nodes to a cluster, it should be possible 
to further reduce reconstruction times without any modifications to the algorithm. This 
should enable clinical use, and might also enable the clinical evaluation of iterative 
reconstruction algorithms. 
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Figure 1. Normalized reconstruction speed scales with the number of 
processing nodes, indicating the low level of synchronization overhead 
and optimal memory management. The blue line corresponds to the first 
volume described in Table 1, the pink line to the second volume and the 
brown line to the third volume. The dashed line represents the case 
where the speed scales exactly with the number of processors. 

Volume 
Dimensions 

1   
node 

2 
nodes 

3 
nodes 

4 
nodes 

5 
nodes 

6 
nodes 

7 
nodes 

8 
nodes 

256x256x52 x 4 rcvrs 
80 time frames  

37.7 min 19.0 min 13.2 min 10.9 min 8.73 min 7.49 min 6.60 min 5.80 min 

512x512x96 x 8 rcvrs 
48 time frames 

82.0 min 44.2 min 28.7 min 22.0 min 17.8 min 15.9 min 13.5 min 11.4 min 

256x256x96 x 8 rcvrs 
64 time frames 

25.1 min 13.1 min 8.6 min 6.6 min 5.4 min 4.7 min 4.0 min 3.7 min 

 Table 1. Reconstruction time scales as the inverse of the number of nodes 
used independently of the acquisition matrix, the number of coils, and the 
number of time frames reconstructed.  
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