C-Y. Hsieh ${ }^{1}$, Y-C. N. Cheng ${ }^{1}$, J. Neelavalli ${ }^{1}$, and E. M. Haacke ${ }^{1}$
${ }^{1}$ Wayne State University, Detroit, Michigan, United States

Introduction: Susceptibility is key to revealing information about oxygenation saturation levels, calcium and iron. We have developed a complex sum method that can be used to determine magnetic susceptibility of narrow but long cylinders from MR images (see Eq. 1) [1]. Our previous studies of the complex sum method [1] required the knowledge of the object size. In this abstract, we present an improved approach that determines the effective magnetic moment without any a priori information.

Theory and Methods: An air cylinder in a gel phantom was previously imaged by a 3D gradient-echo sequence [1]. With the same imaging parameters and orientation, we simulated an air cylinder surrounded by water with $\mathrm{B}_{0}=1.5 \mathrm{~T}$, TE 5 ms and 20ms [1-3]. The air cylinder was perpendicular to B_{0} [1-3]. The radius of the air cylinder (a) was 0.8 mm and image resolutions ($\Delta \mathrm{x}$ and $\Delta \mathrm{y}$) were 1 mm . The magnetic susceptibility difference between water and air was assumed to be -9.4 ppm in SI unit [4] so the effective magnetic moment is defined as $\boldsymbol{p} \equiv g a^{2}$ where g is defined as $0.5 \gamma \mathrm{~B}_{0} \Delta \chi \mathrm{TE}, \gamma$ is the gyromagnetic ratio, $2 \pi \cdot 42.58 \mathrm{MHz} / \mathrm{T}$, and $\Delta \chi$ is the magnetic susceptibility between air and water. Therefore, \boldsymbol{p} was $-6.03 \mathrm{rad} \cdot \mathrm{mm}^{2}$ and $-24.1 \mathrm{rad} \cdot \mathrm{mm}^{2}$ at TE 5 ms and 20 ms , respectively. The black dot shown in Fig. 1 at the center of the magnitude image represents the cross section of the cylinder. Eq. 1 shows the overall complex MR signal S_{i} summed up within a circle of radius R_{i} (as any of the circles in Fig. 1). The overall complex MR signal happens to be a real number in the case of a cylindrical object. For this reason the center of the cylinder can be determined [1]. With three concentric circles shown in Fig. 1, re-arrangement of Eq. 1 leads to Eq. 2 in which \boldsymbol{p} becomes the only unknown. Because the maximum phase value $\left(\theta_{\mathrm{i}}\right)$ at the i-th circle outside the phase aliasing region is $\boldsymbol{p} / \mathrm{R}_{\mathrm{i}}{ }^{2}$ in Eq.2, if this maximum phase value is chosen to be less than 2.4 rad, then \boldsymbol{p} can be uniquely determined. We also studied the uncertainty of \boldsymbol{p} in the presence of both systematic (discretization) and thermal noise through error propagation (Eq.3) [2]. These two noise sources are uncorrelated. Eq. 3 tells us for what imaging parameters and R_{i} the uncertainty of \boldsymbol{p} may be the least. Moreover, the phase profile from an image slice was similar to Fig. 2(b). With the proper choice of R_{i}, their corresponding phase values are listed in Table 1. We measured \boldsymbol{p} from the air cylinder in the simulations and different slices of the gel images. The \boldsymbol{p} values of the air cylinder in different slices at both TE 5 and 20 ms are listed in Table 2. The uncertainties of \boldsymbol{p} in columns 3 and 5 in Table 2 were estimated from Eq.3.

$$
\text { Table } 2 \text { Gel data analysis at TE } 5 \text { and } 20 \mathrm{~ms}
$$

Table 1: Error estimation of \boldsymbol{p} in the simulation		
TE = 5 ms	Phases $(3,2,1)$	Phases $(2.4,1.4,1)$
Systematic noise	0.3%	4.8%
Thermal noise only	2.6%	5.8%
TE = 20 ms	Phases $(3,2,1)$	Phases $(2.4,1.4,1)$
Systematic noise	0.4%	2.7%
Thermal noise only	1.3%	2.4%

Slice TE:ms	\boldsymbol{p}_{1} 5 ms	$\delta \boldsymbol{p}_{1} / \boldsymbol{p}_{1}$ $(\%)$	\boldsymbol{p}_{2} 20 ms	$\delta \boldsymbol{p}_{2} / \boldsymbol{p}_{2}$ $(\%)$	\boldsymbol{p}_{3} 20 ms	\boldsymbol{p}_{2} vs \boldsymbol{p}_{3} $(\%)$
10	-6.93	6	-26.1	2	-27.7	6
19	-6.06	14	-23.7	9	-24.2	2
28	-5.96	13	-21.0	7	-23.8	12
37	-4.82	15	-18.3	9	-19.3	5
43	-4.27	6	-17.8	5	-17.1	4

Phase unit: rad, $\mathrm{SNR}=14.5$ and tube radius=1 pixel
$\boldsymbol{p}_{\boldsymbol{i}}$ unit: rad-mm ${ }^{2} \boldsymbol{p}_{3}=\boldsymbol{p}_{1} \times 4 ; \mathrm{a}=0.8 \mathrm{~mm}$
Results: Most results show an uncertainty of \boldsymbol{p} less than 10% [3]. For the uncertainty study in Table 1 , the uncertainty of \boldsymbol{p} decreases from $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=(2.4,1.4,1)$ to $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=(3,2,1)$ at two different TEs. At echo time, 20 ms , the uncertainty of \boldsymbol{p} is less than that at the TE 5 ms . These results are predicted by Eq.3. Eq. 3 implies that a longer echo time and a high signal noise ratio could lead to accurate \boldsymbol{p} of the small cylinder. In Table 2, \boldsymbol{p}_{3} is calculated from \boldsymbol{p}_{1} and is the expected magnetic moment at TE 20 ms . For the same slice of the gel phantom, \boldsymbol{p} values at TE 5 and 20 ms agree with each other within uncertainties (Table 2). As predicted by Eq. 3, in the same slice, the uncertainty of \boldsymbol{p} at TE 20 ms is also less than that at TE 5 ms shown in Table 2.

Discussions and Conclusion: Results in Table 2 indicate that the air cylinder may slightly collapse at the bottom slice so its radius may be smaller. Simulations with a variety of cylinder radii support this conclusion. The simulations and experimental results well agree with each other. This outcome indicates a promising potential of this method.
References: [1] Cheng et al. M.R.I. 2007; p.1171-1180. [2] Hsieh et al. Medical Physics 2007; p. 2358. [3] Hsieh et al. Proc. ISMRM 2007; p. 2596. [4] Robson et al. AIChE journal 2005; p. 1633-1640

