## A quantitative approach of extracting magnetic moments in small cylindrical object

## C-Y. Hsieh<sup>1</sup>, Y-C. N. Cheng<sup>1</sup>, J. Neelavalli<sup>1</sup>, and E. M. Haacke<sup>1</sup>

<sup>1</sup>Wayne State University, Detroit, Michigan, United States

**Introduction:** Susceptibility is key to revealing information about oxygenation saturation levels, calcium and iron. We have developed a complex sum method that can be used to determine magnetic susceptibility of narrow but long cylinders from MR images (see Eq. 1) [1]. Our previous studies of the complex sum method [1] required the knowledge of the object size. In this abstract, we present an improved approach that determines the effective magnetic moment without any *a priori* information.

Theory and Methods: An air cylinder in a gel phantom was previously imaged by a 3D gradient-echo sequence [1]. With the same imaging parameters and orientation, we simulated an air cylinder surrounded by water with  $B_0 = 1.5T$ . TE 5ms and 20ms [1-3]. The air cylinder was perpendicular to B<sub>0</sub> [1-3]. The radius of the air cylinder (a) was 0.8 mm and image resolutions ( $\Delta x$  and  $\Delta y$ ) were 1 mm. The magnetic susceptibility difference between water and air was assumed to be -9.4 ppm in SI unit [4] so the effective magnetic moment is defined as  $p \equiv ga^2$  where g is defined as  $0.5\gamma B_0 \Delta \chi TE$ ,  $\gamma$  is the gyromagnetic ratio,  $2\pi \cdot 42.58$  MHz/T, and  $\Delta \chi$  is the magnetic susceptibility between air and water. Therefore, p was -6.03 rad mm<sup>2</sup> and -24.1 rad mm<sup>2</sup> at TE 5ms and 20ms, respectively. The black dot shown in Fig. 1 at the center of the magnitude image represents the cross section of the cylinder. Eq.1 shows the overall complex MR signal S<sub>i</sub> summed up within a circle of radius R<sub>i</sub> (as any of the circles in Fig. 1). The overall complex MR signal happens to be a real number in the case of a cylindrical object. For this reason the center of the cylinder can be determined [1]. With three concentric circles shown in Fig. 1, re-arrangement of Eq.1 leads to Eq.2 in which p becomes the only unknown. Because the maximum phase value ( $\theta_i$ ) at the *i*-th circle outside the phase aliasing region is  $p/R_i^2$  in Eq.2, if this maximum phase value is chosen to be less than 2.4 rad, then p can be uniquely determined. We also studied the uncertainty of p in the presence of both systematic (discretization) and thermal noise through error propagation (Eq.3) [2]. These two noise sources are uncorrelated. Eq. 3 tells us for what imaging parameters and  $R_i$  the uncertainty of p may be the least. Moreover, the phase profile from an image slice was similar to Fig. 2(b). With the proper choice of  $R_i$ , their corresponding phase values are listed in Table 1. We measured p from the air cylinder in the simulations and different slices of the gel images. The p values of the air cylinder in different slices at both TE 5 and 20ms are listed in Table 2. The uncertainties of *p* in columns 3 and 5 in Table 2 were estimated from Eq.3.

$$S_{i} = \pi l \rho_{i} p \int_{p/R_{i}^{2}}^{p} dx \frac{J_{0}(x)}{x^{2}} - (1) \quad (S_{i} - S_{2}) \times \int_{p/R_{i}^{2}}^{p/R_{i}^{2}} dx \frac{J_{0}(x)}{x^{2}} = (S_{2} - S_{3}) \times \int_{p/R_{i}^{2}}^{p/R_{i}^{2}} dx \frac{J_{0}(x)}{x^{2}} - (-----(2))$$

$$\frac{\delta p}{p} = \frac{\sqrt{|h_{i} - h_{i}|^{2}} \frac{\Delta x \Delta y}{\pi S N R^{2}} (R_{i}^{2} - R_{i}^{2}) + p^{2} c_{12}^{2} (h_{2} - h_{3})^{2} + |h_{2} - h_{i}|^{2} \frac{\Delta x \Delta y}{\pi S N R^{2}} (R_{i}^{2} - R_{i}^{2}) + p^{2} c_{23}^{2} (h_{i} - h_{2})^{2}}{|J_{i}(p/R_{i}^{2}) R^{2} (h_{i} - h_{i}) + J_{i}(p/R_{i}^{2}) R^{2} (h_{i} -$$

Notations in equations: The effective magnetic moment *p* is defined as the above.  $\rho_0$  and *l* are the spin density of water (including imaging parameters) and length of the cylinder, respectively. J<sub>0</sub> is the Bessel function. In Eq.3,  $\epsilon_{ij}$  is the systematic noise  $p_0$  (error) in each annual region, which can be estimated from Table 1.

| Table 1: Error estimation of $p$ in the simulation |                  |                      |  |  |  |  |
|----------------------------------------------------|------------------|----------------------|--|--|--|--|
| TE = 5 ms                                          | Phases (3, 2, 1) | Phases (2.4, 1.4, 1) |  |  |  |  |
| Systematic noise                                   | 0.3%             | 4.8%                 |  |  |  |  |
| Thermal noise only                                 | 2.6%             | 5.8%                 |  |  |  |  |
| TE = 20 ms                                         | Phases (3, 2, 1) | Phases (2.4, 1.4, 1) |  |  |  |  |
| Systematic noise                                   | 0.4%             | 2.7%                 |  |  |  |  |
| Thermal noise only                                 | 1.3%             | 2.4%                 |  |  |  |  |

Table 2 Gel data analysis at TE 5 and 20 ms

| Slice<br>TE:ms | <b>p</b> <sub>1</sub><br>5ms | δ <b>p</b> <sub>1</sub> /p <sub>1</sub><br>(%) | <b>p</b> <sub>2</sub><br>20ms | δ <b>p</b> <sub>2</sub> / <b>p</b> <sub>2</sub><br>(%) | <b>p</b> <sub>3</sub><br>20ms | <b>p</b> <sub>2</sub> vs <b>p</b> <sub>3</sub><br>(%) |
|----------------|------------------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------|-------------------------------|-------------------------------------------------------|
| 10             | -6.93                        | 6                                              | -26.1                         | 2                                                      | -27.7                         | 6                                                     |
| 19             | -6.06                        | 14                                             | -23.7                         | 9                                                      | -24.2                         | 2                                                     |
| 28             | -5.96                        | 13                                             | -21.0                         | 7                                                      | -23.8                         | 12                                                    |
| 37             | -4.82                        | 15                                             | -18.3                         | 9                                                      | -19.3                         | 5                                                     |
| 43             | -4.27                        | 6                                              | -17.8                         | 5                                                      | -17.1                         | 4                                                     |

136

Phase unit: rad, SNR=14.5 and tube radius=1 pixel

 $p_i$  unit: rad-mm<sup>2</sup>  $p_3 = p_1 \ge 4$ ; a=0.8 mm

**Results:** Most results show an uncertainty of p less than 10% [3]. For the uncertainty study in Table 1, the uncertainty of p decreases from  $(\theta_1, \theta_2, \theta_3)=(2.4, 1.4, 1)$  to  $(\theta_1, \theta_2, \theta_3)=(3.2, 1)$  at two different TEs. At echo time, 20 ms, the uncertainty of p is less than that at the TE 5ms. These results are predicted by Eq.3. Eq. 3 implies that a longer echo time and a high signal noise ratio could lead to accurate p of the small cylinder. In Table 2,  $p_3$  is calculated from  $p_1$  and is the expected magnetic moment at TE 20ms. For the same slice of the gel phantom, p values at TE 5 and 20ms agree with each other within uncertainties (Table 2). As predicted by Eq. 3, in the same slice, the uncertainty of p at TE 20ms is also less than that at TE 5ms shown in Table 2.



**Discussions and Conclusion:** Results in Table 2 indicate that the air cylinder may slightly collapse at the bottom slice so its radius may be smaller. Simulations with a variety of cylinder radii support this conclusion. The simulations and experimental results well agree with each other. This outcome indicates a promising potential of this method.

**References:** [1] Cheng et al. M.R.I. 2007; p.1171-1180. [2] Hsieh et al. Medical Physics 2007; p. 2358. [3] Hsieh et al. Proc. ISMRM 2007; p. 2596. [4] Robson et al. AIChE journal 2005; p. 1633-1640