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Introduction: Quantifying magnetic susceptibility of biological tissue using MRI has important clinical implications such as for differentiating a hemorrhagic lesion as 
acute or chronic, in determining its size, identifying calcifications, quantifying iron deposition in sub-cortical structures and measuring oxygen saturation in blood. MR 
susceptometry of substances in standard geometries (sphere or cylinder) has been done in the past [1,2] and methods for dealing with arbitrarily shaped objects have 
recently been presented [3,4]. We present here a, fast, novel method for quantifying magnetic susceptibility of an arbitrarily shaped object, from its field distribution 
measured using MR. This method differs from earlier methods presented for arbitrarily shaped objects in that it uses a Fourier transform based approach [5,6] and is 
considerably robust and fast in convergence. Previously we made an important theoretical improvement of the Fourier based field calculation method [6] which we use 
here in our susceptibility quantification algorithm. 
 

Theory, Materials & Methods: The induced magnetic field deviation distribution B(r), within and around an object, can be calculated through the Fourier 
transformation of the geometry and the tissue susceptibility χ(r) using B(r) = Bo·FT-1[ FT[χ(r)] . FT[G(r)] ], where Bo is the main magnetic field, FT stands for Fourier 
transform, and G(r) is the Green’s function (discrete Green’s function given in [6]). The parameter χ(r) is spatial distribution of the susceptibility within the object. For 
an object with uniform susceptibility, the χ of the object can be separated from its geometry function and FT[χ(r)] = χ.FT[geometry]. Hence for any arbitrary object with 
uniform χ value, by obtaining the geometry from a fast gradient echo, high bandwidth, short echo time dataset, and using a measured field map from the phase images, 
we can estimate the susceptibility of the object. This can be done by fitting its 3D field distribution estimate, from Eq. 1 assuming χ=1, to the measured field through the 
least squares fit method. That is, minmizing f in Eq 2: f =Σn

i=1 SNRi
2[(φi – (φo +χ.gi ).γ.TE.Bo], where, ‘i’ denotes the voxel under consideration, SNRi is the magnitude 

signal to noise ratio within the voxel, φi is the measured, unaliased phase, φ0 is a constant phase shift due to rf pulse and frequency adjustment done by the spectrometer 
(to be determined), gi matrix is FT-1[ FT[geometry] . FT[G(r) ], χ is the susceptibility value to be determined, and γ and TE denote the proton gyromagnetic ratio and 
echo time, respectively.  Noise in the measured field map (from phase) can influence such a least squares approach considerably. Hence we developed an iterative 
thresholding algorithm to exclude voxels with noise and those with no considerable phase information and through this, eventually arrive at the right value of χ. 
 Phase, being φi= γ.TE.ΔB, the amount of phase information and consequently the measurable ΔB information is echo time dependent. The standard deviation 
of phase is σphase=1/SNRmagnitude, is determined by the SNR in the magnitude image, and is only a measure of the expected deviation of phase values from the ‘supposed 
to be’ phase value within a given voxel. So, thresholding in phase, to exclude noise voxels using σphase requires the knowledge of an estimate of the expected φi in the 
voxel. Our algorithm involves the following steps: (a) obtain the field map from unaliased phase images; (b) for first iteration only: estimate φo, and χ by least squares 
fitting (φo,initial, χinitial), considering all the voxels within the object; Or use a physically reasonable estimate for χ and 0 for φo as initial values;  c) find the voxel set which 
satisfy | φi|>±3 σphase; (d) find the voxel set which satisfy {γ.TE.Bo.(φo (m-1) + χ(m-1) .gi) - 3σphase} > φi > {γ.TE.Bo.(φo,(m-1) + χ(m-1) .gi) + 3σphase} where χ(m-1) and φo, (m-1) is the χ 
and φo values estimated in the previous iteration; (e) find the intersection set of the voxel sets found in (c) and (d) and use them for the least squares fitting and get new 
values of φo, m and χ m and iterate through steps (d) and (e) until the % change between χm-1 and χm is less than 0.1%. We use the above algorithm for quantifying χ of 
distilled water (with respect to air) contained in a phantom with a complicated geometry (Δχwater/air=9.4ppm). Furthermore, we evaluate the robustness of this method by 
(i)varying the initial χ (about the expected 9.4ppm); (ii) by only using arbitrary sub-sections the phantom for the least squares fitting; and calculate the error in the 
quantified χ w.r.t the expected 9.4ppm. 
A cylindrical polypropylene container (wall thickness 1mm) with a small hollow cylindrical cavity inside, was filled with distilled water and imaged at 1.5T (Siemens 
Sonata) using the SWI sequence (fully flow compensated) with TR 15ms, FA 6o, voxel 0.78 x 0.78 x 0.78mm , 
matrix 256x256x192, BW 610 Hz/pixel (to avoid distortion), and at echo times 6.58ms and 9.58ms to get phase 
at TE=3ms from which the field map was calculated. Just before imaging the water phantom, shimming was 
performed using a spherical phantom (dia-170mm, containing NiSO4), to within 6Hz FWHM frequency spread, 
and the shim current values were noted which were then used while imaging the cylindrical water phantom. 

 

Results: The iteration method, irrespective of the χinitial value used, converges to the values of 
φo=0.76ppm and Δχair/water = 9.53 ppm; an error of only 1.4% w.r.t the expected theoretical value of 
Δχair/water = 9.4ppm. The convergence, as shown in Fig 2 and Table I, occurs within less than 15 
iterations. Even with partial field information, i.e. considering field information from only half of 
phantom (different halves, Fig 3), the value converges quickly to within 5% of the theoretical value 
(Table I). The least squares estimation error in the parameters themselves is quite small; on the order 
of 0.5% of the parameter’s value, which is due to the large number of points used in the fitting 
procedure.  
 

Discussion and Conclusion: The fact that even with partial field information from the object, this 
method converges quickly to within 5% of the actual value is quite impressive. And the fast 
convergence, independent of the initial estimates, shows the robustness of the method. A key requirement for this method is that the 3D geometry of the field perturbing 
object is to be well defined; else discretization error in the representation of the object could increase the error considerably. Since FT is linear in nature, field due to 
any complicated χ distribution can be represented as the sum of fields due to many sub-structures, each with uniform χ. Thus, it lends itself easily to be applied to even 
complicated distributions of χ. And, being based on FT, the implementation of this method is quite fast even for large matrices. In summary, we present here a fast,  
highly robust and easy to implement method for quantification of susceptibility of arbitrarily shaped objects using MR. 
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Fig 2: Plot showing convergence of χ value 
under different initial conditions. 

Fig 1: Axial (left), Coronal and Saggital (right) views 
of phase images of the phantom @ TE=9.58ms 

top 

bottom  
right  left  front 

back 

Fig 3: Visual depiction of division of the  
phantom field map 

 into different halves 
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convergence

All 
voxels

0.76 9.54 0.00015 0.0033 -1.48 8

front 0.77 9.78 0.00021 0.0045 -4.07 7
back 0.76 9.17 0.00022 0.0048 2.46 11
top 0.80 9.80 0.00020 0.0046 -4.22 5

bottom 0.67 9.50 0.00023 0.0045 -1.11 9
left 0.76 9.54 0.00021 0.0046 -1.50 7

right 0.76 9.53 0.00022 0.0047 -1.42 10

Table I (see figure 3 for orientation)
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