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Fig.1. Aapplication of 
the adaptive con-
volution to  renal flow 
mapping using the  
model from ref [1]. 

Fig.2. Execution time of the adaptive 
convolution as a function of tolerance τ. 
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Modeling of the perfusion using dynamic contrast-enhanced (DCE) imaging based on convolution models is gaining increasing attention.  The time 
activity curve of ith voxel is sampled at predefined time intervals, yielding a contrast concentration Ci(t) evaluated at discrete times t=t1…tNT.  
Perfusion model is then specified to express Ci(t) as the convolution of an impulse response function IRF(t) and the arterial input function A(t).  For a 
given model, IRF(t) is represented as a piecewise analytical function that is parametrized by tissue parameters such as flow rate, transit time, or 
distribution volume. These parameters {p1, p2, … pn} are then used to fit the measured data Ci(t) by minimizing the residual: 

( )∑
=

⊗−=
NT

t

tIRFAtC
1

2)()(δ  

Typically the convolution operator is invoked on the order of 104 times for each voxel’s minimization, and the imaging volume of interest contains 
between 105 and 106 voxels. Thus, an efficient implementation of the convolution represents a significant computational challenge. The naive 
approach consists of a uniform sampling t=t1, … tN of the temporal domain, extrapolation of A(t) and IRF(t) over these samples, and calculation of 
convolution either by discrete integration or by multiplying corresponding Fourier transforms. Computational complexity is O(N2) and O(N log(N)) 
respectively. In practice direct integration is often used due to its simplicity. Additionally, due to discrete sampling of IRF result in an error that is 
proportional to 1/N. To improve the computational speed and be able to control the convolution error due to discrete sampling of IRF(t) we have 
developed and implemented the adaptive convolution algorithm. The method was tested for its speed and convolution accuracy on renal perfusion 
renography data using Gd-DTPA as the tracer. 

METHODS 
The method takes as an input parameter a user-specified tolerance τ measured in units of tracer concentration. The value 
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is then computed. For any given value of fitting parameters  {p1, p2, … pn} we approximate the IRF(t) with a (possibly 
discontinuous) piecewise linear (PWL) function IRF*(t).  To achieve this, we subdivide the domain [0,T] into subintervals 
[tj, tj+1] where: (a) IRF is continuous, and (b) the modulus of its 2nd derivative is non-strictly monotonic. For each such 
subinterval we apply the following procedure to calculate IRF* with accuracy |IRF(t)-IRF*(t)| < ε. Starting from the 
endpoint where the 2nd derivative module is larger, we compute the longest step [u,v] towards the second endpoint, such 
that is guaranteed to satisfy |IRF(t)-IRF*(t)| < ε for all t in [u,v].  We are using the fact that module of the 2nd derivative 
can only decrease in the direction of advance according to the subinterval constraints.  The process is iterated (i.e u:=v or 
v:=u depending on the starting endpoint) until the entire subinterval [tj, tj+1] is covered.  The second task, the convolution 
of two PWL functions, A(t) and IRF* is then calculated precisely in analytical form. The computational complexity of this 
step is O(N1+N2) where N1 is the number of samples for A(t) and N2 the number of samples for IRF*. The result is 
guaranteed to differ by no more than τ from the exact convolution. The adaptive convolution algorithm was implemented 
using C++ language.   

RESULTS AND DISCUSSION 
The algorithm was tested on the kidney perfusion model [1] and MR renography 
acquisition that consisted of 17 dynamic frames acquired in a nonuniform fashion over 
75 seconds. Each 3D volume consisted of 300K voxels. Calculation of renal plasma 
flow (Fig. 1) on the dual-core Intel T7200 2.3GHz mobile processor took about 3 
minutes for τ = 0.001 mM. Figure 2 plots the execution time as a function of τ. For 
comparison, the naïve approach, when implemented using optimized C++ code, 
required sampling dt = 0.1 sec to attain a similar precision and took 400 times longer to 
execute.  In conclusion, the adaptive convolution algorithm enables fast and accurate 
analysis of DCE MR datasets. 
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