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Introduction: The PatLoc concept has been introduced to perform imaging using 
non-bijective, curvilinear encoding fields [1]. Simulations have shown that a pair of 
mutually rotated multipolar encoding fields with cylindrical symmetry combined with 
a linear gradient for slice-selection have very good imaging properties especially in 
the outer half of the enclosed cylinder [2]. The gradients of these fields are mutually 
orthogonal as depicted in Fig. 1. Not least, this property is responsible for the good 
quality of the reconstructed images.  
We have addressed the problem of finding a simple method capable of generating 
all possible orthogonal fields for 2D encoding. Basic findings from complex analysis 
show that it is possible to describe the fields as real and imaginary parts of a 
complex-valued holomorphic function.  Moreover, the set of holomorphic functions 
on  a given simply connected region is equivalent to all mutually orthogonal source 
free fields on the same region.  
 

Theory:  A holomorphic function f(z) can be split up into its real and imaginary part and at the same time the real and imaginary compent of z = x+iy can 
be interpreted as spatial components in two-dimensional Euclidian space: 
 

                                        ( ) ( , ) ( , )f z u x y iv x y= +  (1) 
 

If f is holomorphic, u and v satisfy the Cauchy-Riemann differential equation. It can also easily be shown that u and v satisfy Laplace’s equation and at 
the same time ( )( ) 0.u v∇ ∇ = On the other hand an arbitrary function satisfying Laplace’s equation on a simply connected region can be written as the real 
or imaginary part of a holomorphic function [3]. The correspondance of encoding fields 1 2 and B B with  and u v              
 

           1 2( , ) Re( ( )) ( , )   and   ( , ) Im( ( )) ( , )B x y f z u x y B x y f z v x y= = = =  (2) 
 

leads to the following interpretation: every mutually orthogonal pair of magnetic encoding fields can be described by a corresponding holomorphic 
function and vice versa.  
 

Results: Some simple applications to the above theoretical approach are given in this section. Within a neighbourhood of the origin, every holomorphic 
function coincides with its Taylor series ( ) .n

nf z a z=∑ It is especially interesting to examine the fields, which correspond to the 
monomials ,  1,..., .nz n = ∞ For 1n = this gives linear gradients, as Re( ) and Im( ).x z y z= = For 1n > the monomials are given by n n inz r e ϕ= and therefore 

1 2( , ) cos( ),  ( , ) sin( ).n n n nB r r n B r r nϕ ϕ ϕ ϕ= = Hennig et al. has proposed in (2) to use coils, which correspond to the monomial of order 4.n =  Fig. 2 illustrates 
the linear gradients and two pairs of ideal multipolar fields corresponding to the monomials of lowest order. These fields were used to encode a phantom 
of concentric circles and radial lines. The simulated signals served as input to a generalized SENSE-like reconstruction method, which is capable of 
dealing with the occurring ambiguities. The reconstructed images are also 
presented in Fig. 2. 
  
Discussion: We have shown that it is useful to represent all possible 
orthogonal fields with a cylindrical symmetry by holomorphic functions. Only 
encoding fields corresponding to monomials have so far been used or 
proposed for imaging. Expansion into a Taylor series points these fields out. 
They are closely related to spherical harmonics expansions used in gradient 
and shim coil design [4]. The fields corresponding to the monomials nz are in 
fact the fields of shim coils of order (n,n).  
There is a close relationship between radial decay of field strength and 
multipolarity. When sharp imaging is only desired at the periphery, a higher 
degree of multipolarity leads to higher resolution. On the other hand, when 
large imaging areas are important, the field should change more or less 
linearly. In this case non-bijective imaging could possibly be improved by 
relaxing the condition of strict orthogonality. Moreover, in practical situations 
the boundary conditions to Laplace’s equation can in general not be met 
exactly because coils have to be open at least on one side.      
The presented approach suggests that there exists a broad spectrum of 
possible magnetic fields, which still have to be investigated. To give an 
example, the function ( )  sin( )f z z= corresponds to fields, which vary 
sinusoidally, but not in the cirumferential direction, but in  a linear fashion.  
On the one hand, the flexibility of the presented approach is well adapted to 
the optimal design of encoding fields for specialized applications, on the 
other hand, the simple mathematical structure makes this approach 
especially interesting for embedding into more general numerical optimal 
design formulations.   
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Figure 1:  Superposition of two 
contour plots of spatial encoding 
fields with six poles. The fields 
vary sinusoidally in the 
circumferential direction. They 
are phase-shifted by 90°. This 
results in contour lines – or 
equivalently in field gradients – 
which are mutually orthogonal in 
each point. 
 

 

 
 

  

 
 

  

   
 

Figure 2: Upper line and middle line: The orthogonal magnetic fields 
corresponding to the monomials of lowest order. Bottom line: 
Reconstructed images of a phantom with concentric circles and radial 
lines having been encoded by the encoding fields above. 
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