Myocardial T₁₀ Mapping at 3T Using a Novel Spin-Locking Technique

B. E. Northrup^{1,2}, X. He¹, K. S. McCommis¹, and J. Zheng¹

¹Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States, ²Dartmouth Medical School, Hanover / Lebanon, New Hampshire, United States

Purpose

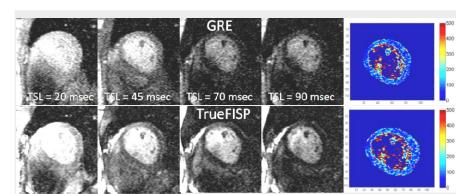
Recent studies have shown that T_1 relaxation in the rotating frame of reference $(T_{1\rho})$ can be used to differentiate normal myocardium from that which has suffered irreversible ischemic damage [1,2]. Additionally, T_{1p}-weighted imaging has been used to measure cerebral blood flow and oxygenation with contrast agents, such as H_2^{17} O, via T_{1p} mapping techniques [3,4]. However, the application of T_{1p} mapping techniques to in vivo cardiac MR imaging has been limited by sequence lengths that render acquisition in a single breath-hold impractical. The purpose of this study is to develop and evaluate a new spin-locking technique on a clinical 3T MRI system capable of acquiring myocardial T_{10} -maps in a single breath-hold.

Methods

Five volunteer subjects between the ages of 20 and 30 with no known history of cardiovascular disease were imaged on a 3.0-T (Siemens, Trio) MRI system with a phased-array cardiac coil. The sequence consisted of spin-locking preparation pulses and either segmented gradient-recalled echo (GRE) or segmented SNR at 255.4 Hz

balanced gradient-echo (TrueFISP) acquisitions. In order to compensate for B0 and B1 field imperfections [5,6], the spin-locking preparation pulse consisted of a hard excitation pulse (x axis), followed by a half duration of spin-locking pulse (y axis), a refocusing pulse (y axis), another half duration of spin-locking pulse (-y axis), and a hard pulse (-x axis) to return magnetizations to the zaxis. A composite refocusing pulse was used to reduce the artifacts from the imperfect 180° flip. Images corresponding to different spin-locking durations were acquired in an interleaved fashion. All 5 subjects completed three ECG-gated GRE sequences (with spin-lock frequencies of 85.14, 170.3, and 255.4 Hz) during uninterrupted breath-hold (~ 20 sec). Four subjects also completed three ECG-gated TrueFISP sequences (with identical spin-lock frequencies) during a breath-hold. Four spin-locking durations (TSL), 20, 45, 70, and 90 msec, were used in a single scan. A mid-ventricular short-axis section was imaged with an in-plane resolution of 2 x 1 mm² and a section thickness of 8 mm. A ringshaped ROI was drawn on the entire myocardial ring of the left ventricle (LV). This was used to

calculate $T_{1\rho}$ -weighted signal intensity and signal-tonoise ratio (SNR). $T_{1\rho}$ mapping was then obtained [3].


Results

The T₁₀ values for the two sequences are shown in Figure 1. A comparison of the myocardial T₁₀ values between GRE and TrueFISP sequences at spin-lock frequencies of 85.14, 170.3, and 255.4 Hz (P values of 0.05, 0.15, and 0.07, respectively) suggested a trend towards a significant difference. Additionally, no differences were observed among the three spin-locking frequencies, which is consistent with other reports [7]. A typical signal decay curve with increasing TSL duration is shown in Figure 2. Figure 3 demonstrates calculated myocardial $T_{1\rho}$ maps that show relatively uniform $T_{1\rho}$ distributions.

Conclusions

Using this spin-locking pulse sequence, a series of T₁₀-

weighted images can be acquired in a single breath-hold, allowing for single-section T_{10} mapping. The difference in the myocardial T_{10} values between the GRE and TrueFISP sequences may be due to the sensitivity of TrueFISP sequence to the residual field inhomogeneity of the 3T system. This study provided baseline myocardial $T_{1\rho}$ data in normal subjects, which will be useful for the evaluation of myocardial function in various disease states with $T_{1\rho}$ techniques in the future.

Mγocardial T1ρ Value

70

60

50

40

30

20

20

18

16

14

12

8

6

2

0

20

K 10

59.87

Myocardial T_{1p}-Weighted Signal Intensity Values

51.65

Spin-Locking Frequency (Hz)

Figure 1. Myocardial T₁₀ values from GRE and TrueFISP

sequences at varying spin-locking frequencies.

GRE

255.4

—GRE

TSL (msec)

Figure 2. Myocardial SNR at increasing TSL times.

►TrueFISP

Figure 3. T₁₀-weighted GRE (top) and TrueFISP (bottom) images and corresponding Tlp maps. Little intra scan motion artifacts were observed. Higher SNR was shown in TrueFISP images, but slightly lower $T_{1\rho}$ was obtained. The scale bar unit is msec.

References

- 1. Muthupillai R, et al. Radiology 2004;232:606-610.
- 3. Tailor DR, et al. Magn Reson Med 2003;49:479-487.
- 5. Witschey II WR, et al. J Magn Reson 2007;186:75-85.
- 7. Charagundla SR, et al. J Magn Reson 2003;162(1):113-121.
- 2. Huber S, et al. J Magn Reson Imaging 2006;24:1040-1046.
- 4. Tailor DR, et al. Magn Reson Med 2003;49:1-6.
- 6. Avison MJ, et al. Proc. ISMRM 2006: pg. 2356.