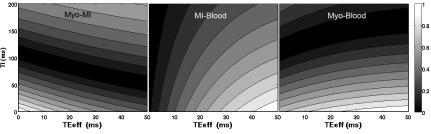
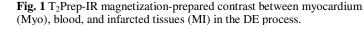
Improved Myocardial Viability Imaging with T2-Prepared Inversion Recovery (T2PREP-IR)

C-Y. Liu¹, O. Wieben¹, J. H. Brittain², and S. B. Reeder³

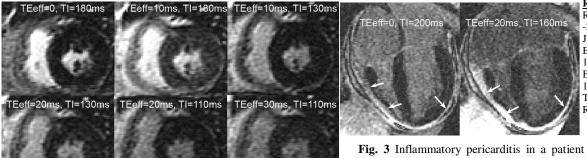

¹Medical Physics, University of Wisconsin-Madison, Madison, WI, United States, ²MR Applied Science Laboratory, GE Healthcare, Madison, WI, United States, ³Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States


Introduction The most common MR approach for evaluating the viability of myocardium in ischemic heart disease is the use of an inversionrecovery (IR) fast gradient echo (GRE) sequence several minutes after the administration of a gadolinium (Gd) based contrast agent¹. The optimal inversion time (TI) is selected to suppress signal from normal myocardium, providing high conspicuity of the enhancing myocardial infarction (MI). Such delayed-enhancement (DE) imaging exhibits excellent contrast between infarcted and normal myocardium. However, the blood in the cardiac chambers and the MI have similar T₁ values, potentially resulting in a lack of contrast between the ventricular blood and subendocardial infarction that can limit the detection and evaluation of infarcted tissue. Therefore, differences in the T_2 of blood and myocardium can be exploited to produce contrast between these tissues. Kellman *et al* proposed a technique that acquires an additional image with T_2 weighting that is perfectly registered to the DE image². We propose a method that combines IR and T₂ preparation into a single magnetization-prepared sequence (T₂Prep-IR³) to acquire a single image with mixed T_1 and T_2 contrast, thereby improving the contrast between enhancing subendocardial infarction and intrachamber blood.

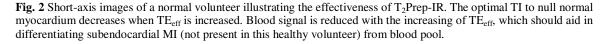
Theory

The T₂Prep-IR pulse sequence consists of a T₂ preparation⁴ followed immediately by a nonselective adiabatic inversion pulse. The first imaging excitation is then delayed an interval TI to allow nulling of a particular T₁ species (eg. normal myocardium in a viability study). The amount of T₂-contrast is determined by the T₂Prep duration, TE_{eff}. TE_{eff} is selected to differentiate species that share similar T₁ values but have different T₂ values (eg. MI and blood). The contour plots in Fig.1 summarize the contrast between normal myocardium $(T_1/T_2=390/50ms)$, chamber blood with Gd

 $(T_1/T_2=250/250 \text{ ms})$, and myocardial infarction $(T_1/T_2=250/50 \text{ ms}^2)$



15 minutes after contrast administration. The T_1 of MI was chosen to represent the worst case encountered in DE studies, when the T_1 of blood and infarcted myocardium are identical. By adjusting TE_{eff} and TI values, different contrast can be attained. No signal difference is seen between MI and blood when TE_{eff} is close to zero. By increasing the TE_{eff}, contrast between enhancing myocardium and blood can be generated, due to differences in T_2 between these tissues. However, Fig.1 also indicates that the optimal TI to null myocardium is decreased when TE_{eff} is increased and myocardiaum and MI are not differentiable when TE_{eff} is greater than 50ms due to signal decay from their short T_2 values. Hence, a short TE_{eff} is preferred and may be sufficient to achieve good contrast between infarcted myocardium and chamber blood.


Methods The T₂Prep-IR preparation was incorporated into a fast GRE sequence that is used clinically for viability studies at our institution. Imaging on volunteers and patients was performed on clinical 1.5T GE Signa HDx scanners using an eight-channel phased array coil, with approval from our IRB and after obtaining informed consent. T₂Prep-IR images were acquired subsequent to the standard IR imaging at the same slice locations. Images were obtained 10-20 minutes after IV administration of 0.15mmol/kg of gadobenate dimeglumine (Multihance, Bracco, Princeton New Jersey) using the following protocol: ECG-gated, TR/TE=6.4/3.1ms, flip angle= 20° , $32 k_v$ lines acquired every other heart beat, slice thickness/FOV=8/350mm, 256x192 matrix.

<u>Results:</u> Fig.2 shows representative short-axis images acquired in a healthy volunteer. Image contrast was varied by adjusting TE_{eff} and TI. The optimal TI to null myocardium is decreased when TE_{eff} is increased, as predicted. Blood signal is also reduced with increasing TE_{eff}, which should aid in differentiating subendocardial MI (not present in this healthy volunteer) from blood pool. DE cardiac MRI techniques have also been used for the assessment of pericardial inflammation⁵. Fig. 3 demonstrates four-chamber views acquired in a patient with pericarditis. Note the improved differentiation between the inflammatory pericarditis (arrows) and the myocardium using T2Prep-IR compared to the conventional IR approach. **Discussions:** We have demonstrated that a T_2 Prep-IR preparation generates images with mixed T_1 and T_2 contrast. Simulations predict that this method will generate improved contrast between MI, chamber blood, and normal myocardium compared to conventional IR methods of delayedenhancement imaging. Initial results are demonstrated for a patient with pericarditis. An investigation in patients with MI is commencing soon. Acknowledgements We thank Bracco for providing the contrast agent and GE healthcare for their support.

Ref [1] Simonetti OP, et al. Radiology.2001;218(1):215 -23. [2] Kellman P, et al. JMRI. 2005;22:605-613.[3] Brittain J, et al. MRM. 1997;38(3):343-354. [4] Brittain J, et al. MRM. 1995;33(5):689-96. [5] Taylor AM, et al. Eur Radiol. 2006;16:569-574.

Fig. 3 Inflammatory pericarditis in a patient presenting with IR (left) and T₂Prep-IR (right) preparations. Thickened pericardium (arrows) is well seen with T₂Prep-IR.

