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Introduction  It is common in quantitative dynamic contrast enhanced MRI (DCE-MRI) to acquire volume images at regular time intervals and then apply voxel-by-
voxel model-based1 and/or model-free2 methods to analyse the time series data.  This practice requires the assumption that the microvascular structure and physiology 
of the tissues that correspond to any given voxel will determine the characteristics of the time series data for that voxel, e.g. average signal intensity and time series 
curve shape, which will in turn determine the values of the estimated parameters, e.g. IAUC, Ktrans, ve and vp.  It is a small step to hypothesize that if the voxels in an 
image are subjected to a classification (i.e. segmentation) based on the characteristics of the time series data then that classification will be meaningful in terms of the 
underlying microvascular structure and function.  For multi-visit studies, we further assume that this holds for images acquired at different visits and a cross-visit 
segmentation will therefore allow us to follow visit-by-visit changes in the size and location of regions of a tumour with distinct physiological characteristics.  On this 
basis, we describe a data-driven image segmentation method for use with DCE-MRI time series data. 

Data  All patients in our study had primary ovarian cancer and had received conventional treatment using cytotoxic agents.  To follow the progression of residual 
disease in the abdomen and pelvis, we performed DCE-MRI at monthly intervals for six-months or until further treatment was required.  At each visit we acquired 75 
dynamic 3D spoiled gradient echo (Fast Field Echo – FFE) images with a temporal resolution of 4.96 s, voxel size of 2.93 x 2.93 x 4.0 mm3 and FOV of 375 x 375 
x100 mm3 on a Philips 1.5 T Intera scanner.  We manually defined tumour volumes of interest (VOI) in 3D on co-localised T1- and T2-weighted image volumes. 

Methods  We converted the DCE-MRI signal intensity data to contrast agent concentrations to 
remove inter-visit differences in FFE signal intensity due to variations in scanner gain, etc.  Then 
we extracted the entire contrast agent concentration time series for each voxel in the tumour VOI 
and for each visit into a single cross-visit data matrix.  We reduced the data dimensionality using 
principal components analysis3 (PCA) in Matlab®, retaining the principal components indicated by 
the log-eigenvalue plots3.  Next we performed k-means clustering4 (also in Matlab®) using multiple 
start points and multiple numbers of clusters, retaining the solution that minimised the sum of the 
squared euclidean distance from each data point to its assigned cluster mean.  Finally, we 
generated segmentation images from the clustering results and used the cluster VOIs to calculate 
cluster size and per-cluster statistics from 3D maps of Ktrans, ve and vp which we obtained for each 
visit by fitting the extended Kety model5 using the locally-written MaDyM package. 

Results  Figure 1 shows examples of single voxel DCE-MRI time series curves with very different 
characteristics.  Figure 2 shows the segmentation we obtained for a typical patient data set — the 
clusters have consistent colour-mapping across the 6 visits.  When the cluster VOIs were applied 
to parameter maps from extended Kety modelling for the same patient, we obtained the trends 
shown in the graphs of Fig. 3.  In general the differences in parameter values were not statistically 
significant.  Note that the line colours for Figs. 1 and 3 correspond to the cluster colours in Fig. 2. 

Discussion  In Fig. 1, the voxel time series curve from Cluster 1 (blue) shows that no significant 
contrast enhancement occurred in the corresponding tissue; Cluster 2 (green) shows significant 
enhancement with a clear first-pass peak and Cluster 4 (red) shows intermediate enhancement.  We 
selected the voxels retrospectively, to illustrate the principle behind our methodology, and we 
would expect any useful classification algorithm to place them in distinct classes.  Nevertheless, it 
is encouraging that the classification was not obscured after dimensionality reduction with PCA. 
Radiological observations based on the higher resolution T1- and T2-weighted image volumes 
established that the tumour in this data set had a cystic component, which reduced in volume as the 
study progressed and was displaced by new tumour mass.  The location of the cyst matched that of 
Cluster 1, which also reduced in size over the period of the study (Fig. 3): this cluster showed low 
enhancement (Fig. 1), and had very low values of all extended Kety model parameters (Fig. 3).  
We believe it is reasonable to conclude that Cluster 1 corresponds to the cystic component. 
While we do not have independent information, radiological or otherwise, that would allow us to 
deduce which tissue types comprise Clusters 2 to 4, it is not necessary to do so.  Each cluster is 
likely to be heterogeneous within itself, although we expect intra-cluster heterogeneity to be lesser 
than inter-cluster heterogeneity.  Figure 3 provides some evidence to support this assertion.  While 
the differences between median cluster VOI parameter values are not statistically significant, clear 
trends may be observed.  All extended Kety model parameters tend to be lower for Cluster 4 than 
for Clusters 2 and 3, while Cluster 3 tends to have higher Ktrans and vp but lower ve than Cluster 2. 
Typical clinical DCE-MRI studies (e.g. of treatment response to anti-angiogenic or vascular-
disrupting agents) report parameter statistics averaged over the whole tumour VOI6.  However, it is 
likely that different tumour sub-compartments will respond differently to treatment.  Our cross-
visit segmentation method may allow us to follow the evolution of sub-compartments of tumours 
throughout a DCE-MRI study and to observe changes in response to treatment including the 
appearance of new sub-compartments or the disappearance of old ones. 

Conclusions  We have described an unsupervised, data-driven method of cross-visit image 
segmentation for DCE-MRI time series data and illustrated its application in a clinical setting.  The 
method is modular and could be refined, e.g. by replacing the k-means clustering with a more 
flexible fuzzy clustering such as c-means.  We believe that it will provide an objective means of 
following the visit-by-visit evolution of tumour sub-compartments with distinct physiological 
characteristics in clinical studies using DCE-MRI. 
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Figure 2  Four-cluster segmentation of a tumour across six visits 
(no treatment or other intervention between visits). 
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Figure 1  Single-voxel time-series data for 3 locations in the same 
tumour (colours match the corresponding clusters in Fig. 2). 
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Figure 3  Number of voxels and median Kety model parameter 
values (colours match the corresponding clusters in Fig. 2). 
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