Clinical Application of Diffusion-Weighted Imaging with ASSET Technique for Breast Lesions

J. Guangwei¹, A. Ningyu², and Z. Qingyu³

¹Meitan General Hospital, Beijing, China, People's Republic of, ²PLA General Hospital, ³Meitan General Hospital, China, People's Republic of

Purpose To explore the tehnical feasibility of DWI with ASSET (array spatial sensitivity encoding technique) for patients with breast diseases, and evaluate the diagnosis value of ASSET-DWI in distinguishing benign and malignant breast lesions.

Materials and Methods Fifty-six patients with histologically proven malignant (39 cases with 40 lesions) and benign (17 cases with 20 lesions) lesions in breast and 20 healthy volunteers underwent bilateral breast axial SS-EPI with ASSET technique (b value being 0, 600s/mm² and 0, 1000s/mm²), SE T1WI, FSE T2WI by 4-channal phased-array breast coil at 1.5T (GE). Among them, Sixteen patients with breast lesion and 7 healthy volunteers underwent conventional SS-EPI, the imaging quality and the ADC values of normal breast tissues and lesions on ASSET-DWI were compared with that of conventional DWI. The diagnositic value of ASSET-DWI in distinguishing benign and malignant lesions were analyzed.

Results Among the 16 patients and 7 healthy volunteers, all breast tissues and 3 lesions showed distortion on conventional DWI, while the distortion were diminished by ASSET-DWI with 50% shorter acquisition time (Fig 1). There is no difference of ADC values between ASSET-DWI and conventional DWI (P>0.05). There is statistically difference among the mean ADC value of the malignant lesions, the benign ones and nomal breast tissues measured on ASSET-DWI with b=600s/mm² or b=1000s/mm² (P<0.05), respectively. The mean ADC and range of 95% confidence of that were showed in table 1. The sensitivity of ADC value for malignant lesions with a threshold of less than 1.44×10^{-3} mm²/s (b=600 s/mm²) or 1.18×10^{-3} mm²/s (b=1000s/mm²) was 80% (32/40) and 77.5% (31/40), respectively. The specificity of both groups was 95% (19/20) (Fig 2-4). Table 1 Mean ADC value and range of 95% confidence of henign lesions, malignant ones and normal breast with different b value

		Ν	Mean ADC value ($\times 10^{-3}$ mm ² /s)	Range of 95% confidence $(\times 10^{-3} \text{mm}^2/\text{s})$
b=600s/mm ²	Malignant lesions	40	1.33±0.36* [#]	1.21~1.44
	Benign lesions	20	1.82±0.31▲	1.68~1.97
	Normal breast	20	2.05±0.33	1.90~2.21
b=1000s/mm ²	Malignant lesions	40	1.08±0.32* [#]	0.97~1.18
	Benign lesions	20	1.61±0.33▲	1.45~1.76
	Normal breast	20	1.85±0.33	1.70~2.0

*P<0.05 indicating comparision between the malignant and benign lesions, #P<0.05 between the malignant and normal breast and $^{A}P<0.05(0.021; 0.032)$ between the benign lesions and normal breast.

Conclusions ASSET-DWI can be used for breast with decrease of distortion and acquisition time. Either b value being 600s/mm² or 1000s/mm², ADC value of ASSET-DWI all can be used to distinguish majority of malignant lesions from benign ones. The diagnostic threshold of ADC value should be matched with the b value used in ASSET-DWI simultaneouly.

Fig1. 1A is axial T1WI, a mass in left breast. 1B is conventional DWI (SS-EPI), 1C is ASSET-DWI. The lesion shows distortion on conventional DWI compared with it on T1WI. The distortion is decreased on ASSET-DWI.

Fig2. A 52 years old female with invasive ductal carcinoma in right breast. 2A is ASSET-DWI, the lesion in right breast shows high signal on DWI. 2B is the ADC colour map, the ADC value of the lesion is lower $(1.04 \times 10^{-3} \text{mm}^2/\text{s})$ (b=1000s/mm²).

Fig3. A 41 years old female with fibroadenoma in left breast. 3A is ASSET-DWI, the lesion in left breast shows high signal on DWI. 3B is ADC colour map, ADC value of the lesion is higher $(2.13 \times 10^{-3} \text{mm}^2/\text{s})$ (b=1000 s/mm²).

Fig4. A 57 years old female with intraductal papillomatosis in left breast. 4A is ASSET-DWI, the lesion in left breast shows high signal on DWI.4B is ADC map, the ADC value of the lesion is lower $(1.09 \times 10^{-3} \text{mm}^2/\text{s})$ (b= 1000s/mm²).