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I ntroduction:

For free diffusion, there is a mono-exponential relationship between the signal attenuation and the b-value for PFG RF aca LS N=4
diffusion measurements. In the case of restricted diffusion, such as the diffusion of hyperpolarized *He atoms within the [N F [N >
lung, the relationship is no longer mono-exponential, and a variety of models, some purely mathematical and others based S, ) sooter e B Spaier
on assumptions regarding the underlying geometrical structure of the lung, have been used in the analysis of 7] XW
hyperpolarized *He diffusion data. However, most prior studies have measured the signal attenuation over only a narrow b J 2" i |
range of b-values. The purpose of this study was to apply the various models to the same set of *He diffusion data from Npto

human volunteers to determine the how well each of the models fits actual diffusion actual data over a wide range of b-values. Figure 1. DWS Sequence

Methods and Materials:

Diffusion Spectroscopy: *He diffusion-weighted spectroscopy (DWS) datasets were obtained from 14 healthy volunteers (HY) and three COPD patients on a 1.5T
Siemens Sonata MRI system using a “He flexible coil. For each subject, 50 lung spectra were collected (40 diffusion weighted and 10 non-diffusion weighted) using a
non-selective 5° 400 us Gaussian RF pulse ,TE/TR = 6.2 ms/ 40.5 ms. The diffusion gradient parameters were: bipolar trapezoidal, ramp =0.25 ms, §=2.35 ms, A =
2.75 ms (all fixed), 40 logarithmically sampled b-values : 52 s/cm® to 0 s/cm® by varying Gp from 33 mT to 0 mT, direction: A-P during a ~2s s breath hold following
the inhalation of 50-80 mL of *He mixed with ~950 mL of nitrogen gas. B-values sampled were (s/cm2): 51.8, 48, 45.7, 42.8, 40.2, 37.7, 35.4, 33.2, 31.3, 31.2, 29.3,

27.5,25.8,24.2,22.7,22.3,20,18.8, 159, 13.4,11.4,9.6, 8.1,6.9,5.8,4.9,4.1,3.5,3,2.5,2.1, 1.8, 1.5, 1.1, 0.9, 0.5, 0.2 0.03, 0.01 and 0 )
Data Analysis: Data was processed to obtain signal intensities as described in [2] The models commonly used in analysis of *He ADC RRF = 3| 5 A
imaging in vivo were fit to the data: A. Two-point model [1]. B: Mono-exponential model [2]. C. Bi-exponential Model [3] D Geometrical o ; .

model [4] E: Kurtosis model [5]. Fitting was done in Matlab (v 7) with ‘fmincon’ (B and C) and ‘fminsearch’ (D and E), functions To assess Eq. [1]
the goodness-of-fit for the models B to E, the term regression residual error (RRE) was defined (Eq 1) where r; is the fit residual, y; is the data and N is the number of
points. RRE = 0 implies perfect fit, < 1% indicates a good fit while large values implies that the model does not fit the data well.

B value Cutoff Experiment: For model A, ADC was calculated for each of the 39 b-values and b value = 0 s/cm®. For models B to E, since the maximum number of
unknowns was 4 (for model C), the minimum number of b-values required would be 4 and consequently, b-value = 0.5 s/cm? was set as the lower cut-off limit. For each
cut-off b-value, models B to E were fit to data {0 to b-value cutoff} and RRE evaluated. For model C, F-statistic and an approximate P value for the significance level
(0.05) were calculated with respect to model B. Only those cut-off b-values were accepted for which the F-statistic was significant (p < 0.05). For models D, it was
observed that the regression function returned error after a minimum cutoff b-value was reached (since the bica for geometric model is 1/Day [6]) and consequently
those cutoff b-values were rejected. For model E, those cut-off b-values were rejected for which the K, < 0. For overall analysis, for each model, the minimum cut-off
b-value was set intersection of the minimum cutoff values, for each volunteer and COPD patient

Results and Discussion:

Since the DWS data measurement is global and diffusion in the lung airspaces is restricted, excellent SNR (minimum SNR in HY volunteers = 41+24, and in COPD
patients = 15+12) was obtained in human volunteers, even for b values as high as 52 s/cm?. For each model, minimum cutoff b-value obtained after a set intersection:
for models: A : 0.2 s/cm? B : 1.1 s/em?, C : 6.9 s/cm? D : 8.1 s/cm?, E: 4.9 s/cm® Figures 1 to 10 show the trends seen for models as function of b cutoff.
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Overall, with most models, two distinct operating regions are observed, with beyfr = 20 s/lem? serving as the critical hinge-point (Fig 11). On the left side of this critical
b-value region, the sensitivity for detecting ADC changes in pathology is higher, but with increased intra-group variability. On the right wi{ -~ A
side of this hinge point, the intra-group variability was lower, albeit with lower differences between HY and COPD. For all models, _ s \ =2
statistically significant differences (p<0.05) between HY and COPD were seen for each beyosr. For model B, %RRE increases from < 2% at ? 60 / ;i.,..,p.
beutotr = 20 s/cm? t0 > 50% for beyer = 52 s/cm”. This suggests that effects of non-Gaussian behavior become apparent at b > 20 s/cm?, and is :: =
effectively captured by the bi-exponential model (Fig 3 and 4. For model D, an asymptotic value (~330 pm) was reached for the external —
radius R for beyor = 25 s/em? to 52 s/cm’ with a median by for failure = 5.8 s/cm”. This suggests that for model D, measurements must be A AL =

H 2,
done with b-value > 6 s/cm® For model E, large deviations from data were seen for higher b values (RRE > 2%), which increased in Fig 11. cutort b-value tsrenr’)

severity for COPD patients (RRE = 19%). Both D, and K, decreased at higher b along with reduced intra-group CV (from 52% to 10% as by decreased for
Kapp) The failure of models D and E in case of COPD is expected as these models are sensitive to diffusion anisotropy and in case of COPD; anisotropy is progressively
lost due to alveolar destruction[4,6]. The decrease in K, with increasing range of beyosr is consistent with results obtained in kurtosis model from rat lung [6].
Conclusion: A low b-value measurement provides increased sensitivity for detecting COPD, though the measurements with higher b-values improve chances of
detecting changes with COPD with greater confidence (narrower 95% confidence intervals). For both geometric and kurtosis models, a critical b-value of ~ 6 cm*/s has
to sampled to perform reliable evaluation of lung microstructure.
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