## Whole-Body MR Examination for M-Stage Assessment in Non-Small Cell Lung Cancer: How to Use Whole-Body Diffusion-Weighted Imaging as Compared with Integrated FDG-PET/CT

## Y. Ohno<sup>1</sup>, Y. Onishi<sup>1,2</sup>, H. Koyama<sup>1</sup>, M. Nogami<sup>1,2</sup>, D. Takenaka<sup>1</sup>, T. Yoshikawa<sup>1,3</sup>, S. Matsumoto<sup>1</sup>, and K. Sugimura<sup>1</sup>

<sup>1</sup>Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan, <sup>2</sup>Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan, <sup>3</sup>Radiology, Konan Hospital, Kobe, Hyogo, Japan

Introduction: Assessment of M-stage is very important for management in non-small cell lung cancer (NSCLC) patients. Currently, FDG-PET/CT has been suggested as more useful than FDG-PET in this setting. FDG-PET/CT can assess morphological and metabolic information at same time, and widely utilized for cancer screening and TNM staging in lung cancer patients (1-3). Recently, whole-body MR imaging (MRI) has been also suggesting as another technique in this cancer screening and TNM staging in lung cancer patients (1-3). Recently, whole-body MR imaging (MRI) has been also suggesting as another technique in this setting (4). In addition, whole-body diffusion-weighted image (DWI) has been suggested as useful for assessment of tumor staging and metastases (5, 6). However, no direct comparison of capability for M-stage assessment has been made among whole-body DWI only, whole-body MR imaging without and with DWI and integrated FDG-PET/CT in NSCLC patients. In this study, we attempted to validate the hypothesis that whole-body MR imaging with DWI has potential as an alternative technique for the detection of distant metastases in NSCLC patients with a capability similar to that of integrated FDG-PET/CT. To this end, we prospectively and directly compared the capability of whole-body MR imaging with and without DWI and of integrated FDG-PET/CT for M-stage assessment in NSCLC patients, and to determine the utility of whole-body DWI as a component of whole-body MR examination for detection of metastases. **Materials and Methods:** 203 consecutive NSCLC patients (109 men, 94 women; mean age 72 years) prospectively underwent standard whole-body MRI, whole-body DWI, integrated FDG-PET/CT, pre-therapeutic standard radiological examinations for diagnosis of M-stage and more than one-year follow-up examinations. Final diagnosis of M-stage in each patient was determined according to the results of standard radiological and follow-up examinations. As whole-body MR imaging, short TI inversion-recovery turbo spin-echo images (TR 3200ms/ TE 60ms/ TI 165ms) and dual-phase T1-weighted gradient-echo images (TR 100ms/ TE 2.3 and 4.6ms/ FA TI inversion-recovery turbo spin-echo images (TR 3200ms/ TE 60ms/ TI 165ms) and dual-phase T1-weighted gradient-echo images (TR 100ms/ TE 2.3 and 4.6ms/ FA 75°) with and without contrast-media (Gadoteridol, ProHans, Eizai, Japan) were obtained on coronal and sagittal planes by using moving-table system and body coil on two 1.5 T MR scanners (Gyroscan Intera and Achieva, Philips Medical Systems). Whole-body DWI (TR 5759ms/ TE 70 ms/ TI 180 ms/ ETL 141/ b=0, 1000 sec/mm<sup>2</sup>) was also obtained in each patient. All FDG-PET/CT examinations were performed by using standard whole-body PET/CT protocol on a PET/CT scanner (Discovery ST; GE Health Care). All whole-body MR images were prospective assessed by two chest radiologists, and all FDG-PET/CT images were prospectively assessed by two nuclear medicine physicians with more than 3 years experiences of diagnostic radiology. Probabilities of presence of metastases on whole-body DWI, whole-body MRI without and with DWI, and integrated FDG-PET/CT were evaluated by using 5-point visual scoring systems on a per patient basis. Final diagnosis in each patient was made by consensus of two readers. A kappa statistic was used to determine the inter-observer agreement for whole-body DWI, whole-body MR imaging with and without DWI and for integrated FDG-PET/CT on a per-patient basis. To compare capability for M-stage assessment including brain metastases, ROC analysis was used on a per-patient basis. This was followed by a statistical comparison of sensitivity, specificity and accuracy by means of McNemar's test. To compare capability for M-stage assessment excluding brain metastases, ROC analysis was also used on a per-patient basis. This was also followed by a statistical comparison of sensitivity, specificity and accuracy by means of McNemar's test. Results: The assessments demonstrated that interobserver agreements were substantial (whole-body DWI: k=0.62, whole-body MR imaging without DWI: k=0.64,

whole-body MR imaging with DWI: k=0.66, and FDG-PET/CT: k=0.68). When brain metastases were included in M-stage assessment stage including of NSCLC patients, the results on a per-patient basis of ROC analyses of whole-body DWI, whole-body MR imaging with and without DWI and FDG-PET/CT are shown in Figure 1. The feasible threshold value for the visual scoring system for each method was set at 4. The area under the curve for whole-body DWI (Az=0.79) was 1. The feasible threshold value for the visual scoring system for each method was set at 4. The area under the curve for whole-body DWI (Az=0.79) was significantly smaller than those for whole-body MR imaging with DWI (Az=0.87, p<0.05) and integrated FDG-PET/CT (Az=0.89, p<0.05). Tables 1 shows the results on a per-patient basis of a comparative analysis of the diagnostic capability, including assessment of brain metastases, whole-body DWI were significantly lower than those of whole-body MR imaging with DWI (Az=0.87, p<0.05). When brain metastases, whole-body DWI were significantly lower than those of whole-body MR imaging with and integrated FDG-PET/CT. When brain metastases were included, specificity and accuracy of whole-body DWI were significantly lower than those of whole-body MR imaging with and without DWI and integrated FDG-PET/CT (p<0.05). When brain metastases were excluded from M-stage assessment of NSCLC patients, the results on a per-patient basis of ROC analyses of whole-body DWI, whole-body MR imaging with and Without DWI and FDG-PET/CT are shown in Figure 2. The feasible threshold value for the visual scoring system for each of the methods was set at 4. The area under the curve for whole-body MR imaging with the exclusion of brain metastasis assessment, of whole-body DWI, whole-body MR imaging with and without DWI (Az=0.81) was significantly smaller than that for integrated FDG-PET/CT (Az=0.89, p<0.05). The results of a comparative analysis on a per-patient basis of the diagnostic capability, with the exclusion of brain metastasis assessment, of whole-body DWI, whole-body DWI, whole-body DWI, whole-body DWI (Az=0.81) was significantly smaller than that for integrated FDG-PET/CT (Az=0.89, p<0.05). The results of a comparative analysis on a per-patient basis of the diagnostic capability, with the exclusion of brain metastasis assessment, of whole-body DWI, whole-body DWI, whole-body DWI and that of whole-body DWI as a comparative capability lower than that for accuracy of whole-body DWI was si Tables 1 shows the results and integrated FDG-PET/CT (p<0.05). Moreover, accuracy of whole-body DWI was significantly lower than that of integrated and integrated FDG-PET/CT (p<0.05). FDG-PET/CT (p<0.05).

**Conclusion:** Whole-body MR imaging with DWI can be used for M-stage assessment of NSCLC patients with accuracy as good as that of integrated PET/CT. In addition, when whole-body DWI is adopted as an adjunct for whole-body MR examination, the diagnostic capability of whole-body MR imaging for M-stage assessment can be improved, especially when evaluation of brain metastases on whole-body MR imaging is not included.

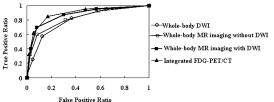



Figure 1. ROC analyses of whole-body DWI, whole-body MR imaging with and without DWI and integrated FDG-PET/CT for M-stage assessment inclusive of brain metastases on a per-patient basis.

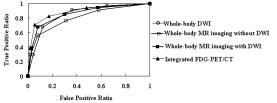



Figure 2. ROC analyses of whole-body DWI, whole-body MR imaging with and without DWI and integrated FDG-PET/CT for M-stage assessment not including brain metastases on a per-patient basis.

## References.

- Truong MT, et al. J Am Coll Radiol. 2004; 1: 957-964. 1.
- Acker MR, et al. J Nucl Med Technol. 2005; 33: 69-74. 2
- 3. Bruzzi JF, et al. J Thorac Imaging. 2006; 21: 123-136.
- Ohno Y, et al. J Magn Reson Imaging. 2007; 26: 498-509. Takahara T, et al. Radiat Med. 2004;22:275-282. 4.
- 5. Komori T, et al. Ann Nucl Med. 2007; 21: 209-215. 6.

Table 1. Comparison of diagnostic capability on a per-patient basis, including assessment of brain metastases, of whole-body DWI, whole-body MRI with and without DWI and Integrated FDG-PET/CT.

|                           | SE (%)  | SP (%)         | PPV (%) | NPV (%)     | AC (%)         |
|---------------------------|---------|----------------|---------|-------------|----------------|
| Whole-body DWI            | 57.5    | 87.7*, **, *** | 53.5    | 89.4        | 83.3*, **, *** |
|                           | (23/40) | (143/163)      | (23/43) | (143/160)   | (166/203)      |
| hole-body MRI without DWI | 60.0    | 92.0           | 64.9    | 90.4        | 85.7           |
|                           | (24/40) | (150/163)      | (24/37) | (150/166)   | (174/203)      |
| Whole-body MRI with DWI   | 70.0    | 92.0           | 68.3    | 92.6        | 87.7           |
|                           | (28/40) | (150/163)      | (28/41) | (150/162)   | (178/203)      |
| Integrated FDG-PET/CT     | 62.5    | 94.5           | 73.5    | 91.1        | 88.2           |
|                           | (25/40) | (154/163)      | (25/34) | (1 54/1 69) | (179/203)      |

SE: Sensitivity, SP: Specificity, PPV: Positive predictive value, NPV: Negative predictive AC: Accuracy AC: Accuracy \*: Significant difference with whole-body MRI without DWI (p<0.05) \*: Significant difference with whole-body MRI with DWI (p<0.05). \*\*\*: Significant difference with integrated FDG-PET/CT (p<0.05).

Table 2. Comparison of diagnostic capability on a per-patient basis, excluding assessment of brain metastases, of whole-body DWI, whole-body MRI with and without DWI and Integrated FDG-PET/CT.

|                            | SE (%)  | SP (%)         | PPV (%) | NPV (%)   | AC (%)     |
|----------------------------|---------|----------------|---------|-----------|------------|
| Whole-body DWI             | 67.6    | 87.7*, **, *** | 53.5    | 92.9      | 84.3**, ** |
|                            | (23/34) | (143/163)      | (23/43) | (143/154) | (166/197)  |
| Vhole-body MRI without DWI | 55.9    | 92.0           | 59.4    | 90.9      | 86.2***    |
|                            | (19/34) | (150/163)      | (19/32) | (150/165) | (169/197)  |
| Whole-body MRI with DWI    | 67.6    | 92.0           | 63.9    | 93.2      | 88.2       |
|                            | (23/34) | (150/163)      | (23/36) | (150/161) | (173/197)  |
| Integrated FDG-PET/CT      | 70.6    | 94.5           | 72.7    | 93.9      | 90.6       |
|                            | (24/34) | (154/163)      | (24/33) | (154/164) | (178/197)  |

: Significant difference with whole-body MRI without DWI (p<0.05) \*: Significant difference with whole-body MRI with DWI (p<0.05)

integrated FDG-PET/CT (p<0.05