Muscle metabolism and acid-base status during exercise in work-related forearm myalgia measured with 31P-MRS

G. Raymer¹, H. Green², D. Ranney², G. Marsh^{3,4}, and T. Thompson^{4,5}

¹Physical and Health Education, Nipissing University, North Bay, Ontario, Canada, ²School of Kinesiology, The University of Waterloo, Ontario, Canada, ³School of Kinesiology, The University of Western Ontario, London, Ontario, Canada, ⁴Imaging Division, The Lawson Health Research Institute, London, Ontario, Canada, ⁵Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada

Introduction

Repetitive strain injuries (RSI) represent a major component of worker disability and discomfort. Approximately 44% of workers involved in repetitive upper limb tasks have reported muscle pain and tenderness which may be classified as forearm work-related myalgia^{*1}. Based on epidemiologic studies, it is known that work-related myalgia (WRM) is specific to muscles engaged in tasks that require stereotyped isometric or near isometric contraction, varying force levels, performed chronically over a sustained period¹. However, while there are indications to suggest that abnormalities in forearm muscle blood flow^{2,3,4,5,6} may represent a significant part of the etiology, the existence of cellular abnormalities is forearm WRM currently unclear.

Purpose

The aim of the present study was to study the metabolic and acid-base status during incremental wrist extension exercise in the forearm of individuals with work-related myalgia (WRM) using ³¹phosphorus magnetic resonance spectroscopy (³¹P-MRS).

Methods

Twelve persons with WRM and 12 healthy matched control participants (CON) were recruited in this cross-sectional study. ³¹P-MRS was used to non-invasively monitor the intracellular concentrations of phosphocreatine ([PCr]), inorganic phosphate ([P_i]), as well as intracellular pH status (pH_i) during an incremental wrist extension exercise protocol. The biphasic parameters related to the onset of a rapid decrease in pH_i and the onset of rapid increases in [P_i]/[PCr] were determined using piecewise linear regression analysis. Data were analyzed for main group time/power, and interaction effects by two-way repeated measures ANOVA. Significance was set at *P*<0.05. Data are presented as mean (SD).

Results

We observed ~ 33 % decreased work capacity in WRM compared to CON (0.18 W (SD 0.04) vs. 0.27 W (SD 0.09) respectively, P<0.05), as well as a significantly lower pH_i (Fig. 1, P<0.05) and significantly greater [P_i]/[PCr] (Fig. 2, P<0.05) in WRM vs. CON at equivalent power output/ATP demands. Furthermore, the onset of a faster decrease in pH_i (i.e. pH threshold, pHT) and the onset of a faster increase in [P_i]/[PCr] (i.e. phosphorylation threshold, PT) occurred at a significantly lower relative power output in WRM (pHT: 51.3 % (SD 9.8) vs. 59.0 % (SD 5.9), P<0.05; pT: 52.4 % (SD 9.5) vs. 59.6 % (SD 6.6), P<0.05; % of peak power output, CON vs. WRM respectively). Representative WRM and CON participant shown in Fig. 3. Mono-exponential modelling of the data collected during the recovery from exercise showed no difference in the time constant (τ) of PCr resynthesis (WRM: 64 s (SD 12) vs. CON: 59 s (SD 14), P>0.05), but did show a slower rate of restoration for pH_i (WRM: 348 s (SD 160) vs. CON: 195 (SD 64), P<0.05).

Conclusion

In summary, for the first time using ³¹P-MRS we have described the dynamics of muscle metabolic and acid-base status during exercise in individuals with work-related forearm myalgia. The salient features of this study were a greater reliance on substrate-level phosphorylation combined with a greater accumulation and earlier onset of intracellular acidosis during incremental exercise. Together, these observations suggest a reduced contribution of aerobic metabolism and increased reliance on anaerobic metabolism. The observation of a slower recovery of intracellular pH in work-related forearm myalgia suggests a possible mechanism of a reduction in local muscle blood flow and perfusion in this condition.

References

- 1. Ranney et al., *Ergonomics* 38:1408, 1995;
- 2. Larsson et al., Occup. Med. (Lond) 48:189, 1998;
- 3. Larsson et al., Pain 79:45, 1999;
- 4. Larsson et al., Pain 57:173, 1994;
- 5. Larsson et al., Acta Orthop. Scand. 61:394, 1990;
- 6. Brunnekreef et al., Clin. Physiol Funct. Imaging 26:178, 2006;

Fig. 1

