Localized ³¹P saturation transfer reveals differences in gastrocnemius and soleus rates of ATP synthesis in-vivo.

D. E. Befroy¹, K. Falk Petersen¹, G. I. Shulman^{1,2}, and D. L. Rothman³

¹Internal Medicine, Yale University School of Medicine, New Haven, CT, United States, ²Howard Hughes Medical Institute, New Haven, CT, United States, ³Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States

Introduction

We have previously demonstrated that basal muscle energy production is impaired in elderly and diseased subjects (1,2), using ³¹P saturation-transfer MRS to assess rates of ATP synthesis, *in-vivo*. Given that there are significant differences in function, metabolic activity and the effects of aging and potentially disease between muscle groups (3), it is highly likely that there are muscle-group specific differences in basal ATP synthesis in healthy subjects and in the modulation of energy production by aging/disease. In these experiments we demonstrate that muscle-specific rates of ATP synthesis can be measured at 4T using adiabatic ISIS-localized ³¹P saturation-transfer MRS, and that there are significant differences in the basal rates of ATP synthesis between the soleus and gastrocnemius muscle groups in healthy subjects.

Methods

All experiments were performed on a 4T Bruker Medspec system. Slice-selective ³¹P spectra were acquired in 5 subjects using an 8 x 5cm elliptical surface coil positioned underneath the soleus/gastrocnemius muscle complex of the calf. The unidirectional rate of ATP synthesis in either the soleus or gastrocnemius muscle groups was measured by the saturation-transfer technique in conjunction with adiabatic 1D-ISIS localization using a custom-written pulse sequence. The slice of interest for each muscle group (Fig 1) was positioned with reference to gradient-echo scout images obtained with a coplanar ¹H surface coil and was selected to contain solely the muscle of interest (gastrocnemius) or have minimal infiltration from other muscle groups (soleus). ³¹P spectra were acquired with frequency-selective saturation of the γ ATP peak or with saturation at a downfield frequency equidistant from P_i, using the following parameters: 2.5msec AHP excitation pulse (centered between P_i and γ ATP), 4msec AFP ISIS pulse, 15sec 'soft' saturation pulse, sweep width = 10kHz, 4096 complex points, effective T_R = 15sec, 32 transients. The T₁ of P_i under conditions of γ ATP saturation (T₁') was measured in each muscle using a custom adiabatic inversion-recovery sequence (5msec AFP inversion) with 1D-ISIS localization. Fully relaxed 1D-ISIS spectra (T_R = 35sec, 16 transients) were obtained to determine ³¹P metabolite concentrations, assuming a constant [ATP] of 5.5 µmol/g in both muscle groups (4). The ordering of the experiments was randomized to prevent any effect of the duration of the study on resting metabolic function.

Results

A scout image of the lower leg from one subject is shown in Fig 1; the shaded areas indicate the typical placement of the gastrocnemius (blue) and soleus (red) slices for localized ³¹P MRS. Representative 1D-ISIS spectra from each slice are shown in Fig 2 – consistent with literature data, the gastrocnemius (blue spectrum) is characterized by slightly higher PCr content and lower P_i , compared to soleus (red spectrum). The data from the saturation-transfer experiment are summarized in Table 1. Although the rate constant for $P_i \rightarrow ATP$ flux (k') is similar between the different muscle groups, the soleus exhibits a significantly higher rate of ATP synthesis (V_{ATP}) than the gastrocnemius, driven by the higher concentration of P_i .

Conclusions

Muscle-specific energy production can be measured at 4T using adiabatic ISIS-localized ³¹P saturation-transfer MRS. Rates of ATP synthesis in two distinct muscle groups can be measured within a reasonable time-frame (< 4 hours). In healthy human muscle the resting rate of ATP synthesis was significantly faster in the soleus than the gastrocnemius, potentially reflecting their differing functional roles: postural (soleus) vs locomotion (gastrocnemius).

Acknowledgements

This work was supported by NIH grants: PO1 DK068229 (GIS) R01 AG-23686 (KFP) UL1RR024139 (DEB)

References

(1) KF Petersen, D Befroy et al, Science 300: 1140-1142, 2003.

- (2) KF Petersen, S Dufour et al, NEJM 350: 664-671, 2004.
- (3) JA Houmard, ML Weidner et al, JAP 85: 1337-1341, 1998.
- (4) GJ Kemp, M Meyerspeer et al, NMR Biomed. 20: 555-565, 2007.