# Quantitative Assessment of Normal and Degenerative Intervertebral Discs Using Apparent Diffusion Coefficient with

### GRAPPA

#### E. Kozawa<sup>1</sup>, W. Mizukoshi<sup>2</sup>, Y. Sato<sup>3</sup>, N. Nishi<sup>2</sup>, and F. Kimura<sup>2</sup>

<sup>1</sup>Diagnostic Imaging, Saitama Medical University, 1397-1, Yamane, Hidaka-shi, 350-1298, Japan, <sup>2</sup>Diagnostic Imaging, Saitama Medical University, Japan, <sup>3</sup>Radiology,

Saitama Medical University, Japan

# Introduction

Diffusion-weighted imaging (DWI) is a new method to quantitatively image intravoxel incoherent motion *in vivo*; it is widely used in grading the cellularity of tumors; and its clinical usefulness has been established using the apparent diffusion coefficient (ADC) [1-2]. Though DWI was introduced to evaluate the spinal cord, there is little of use of magnetic resonance imaging (MRI) in the lumbar intervertebral disc [3-4].

The purpose of our study is to determine if a significant difference between disc ADC and MR findings of disc degeneration. **Materials and Methods** 

Sixty-two consecutive subjects (36 male and 26 female patients; aged 24 to 80 years, mean 55.4) were studied with 1.5-Tesla MRI units (Magnetom Quantum and Sonata, Siemens, Germany) with a phased-array spine coil for benign diseases—back pain or sciatica--or suspected spinal cord disease. Inclusion criteria were no history of malignant, hematologic, or systemic disease. In addition to the routine sequences, such as  $T_1$ -weighted image and T2-weighted image sagittal images, DWIs were obtained with spin-echo sequences with GRAPPA, a parallel imaging technique, (acceleration factor = 2) and the following parameters: repetition time (TR) = 1000; echo time (TE) = 38; field of vision (FOV) = 280 × 280 mm, thickness = 5mm; and b values = 0, 400, and 800 sec/mm<sup>2</sup> (Fig. 1). The reconstructed voxel size was  $2.2 \times 2.2 \times 5.0$  mm. The extent of degeneration in the L3-L4 intervertebral disc was graded on the sagittal images of T2-weighted image according to the criteria used by Weishaupt et al. [5]. Grade 1 was normal, and grade 5 was grouped as most severe degeneration [5]. We established two groups, a normal disc group (grade 1 and grade 2) and a degeneration disc group (grade 3, grade 4 and grade 5).

The ADC was measured from regression using three b-values in L3-4 disc with software of the employed MRI system. The region of interest was measured the central portion of the L3 -L4. Medeian and standard error (SE) were calculated for the ADC. The medians of ADC were compared using Mann-Whitney's U test and commercially available software (JMP; SAS Institute Inc.). Significance was defined as P < 0.01.

# Results

The ADC values of the L3-L4 intervertebral disc for each group were (median+/-SE): normal disc group:  $(1.69 + -0.04 \times 10^{-3} \text{ mm}^2/\text{sec})$  and degenerative disc group:  $(1.20 + -0.04 \times 10^{-3} \text{ mm}^2/\text{sec})$  (Figs. 1, 2, and 3). The median ADC values of normal disc group was significantly higher than that of degenerative disc group (P < 0.01).

# **Discussion and Conclusion**

The ADC values of normal disc group were high and of degenerative disc group, low. Kealey SM and colleagues reported respective ADC values degeneration disc and normal disc marrow of  $2.27 \times 10^{-3}$  mm<sup>2</sup>/second and  $2.06 \times 10^{-3}$  mm<sup>2</sup>/second [3]. These ADC values are higher than those of our normal and degenerative disc, probably because the b values chosen in our study and in prior studies were differences (0, 400 and 800 sec/mm<sup>2</sup> in our study compared with 0, and 400 sec/mm<sup>2</sup> in the previous studies).

Tissue ADC is thought to be composed of extra- and intracellular tissue compartments [3,4]. Disc degeneration is characterized by a loss of extracellular water in the nucleus pulposus and disc ADC value is decreased. In conclusion, a statistically significant decreased in the ADC values of degenerated lumbar disc compared with the ADC values of normal disc. **References** 

# 1. Asao C, et al. AJNR 26: 1455, 2006

2. Kitis O, et al. Eur. J Rad 55: 393, 2005.

- 2. Kills O, et al. Eur. J Rad 55: 595, 2005. 3. Kealey SM, et al. Radiology 235: 569, 2005.
- 4. Tokuda O et al. JMRI 25: 1851, 2007
- 5. Weishaupt D, et al. Radiology 209: 661, 1998





 $\begin{array}{cccc} Fig. 1 & (a) & (b) & (c) & (d) \\ A & 29 \mbox{-year old male of normal disc } ADC = 1.76 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{$x10^{-3}$} \\ mm^2 \mbox{-year old male of normal disc } ADC = 0 \mbox{-year old male old male of normal disc } ADC = 0 \mbox{-year old male old male of normal disc } ADC = 0 \mbox{-year old male o$ 

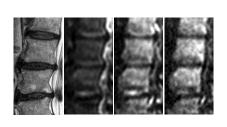
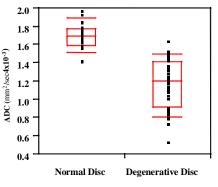





Fig. 2 (a) (b) (c) (d) A 75-year old male of degenerative disc. ADC=1.05x10<sup>-3</sup> mm<sup>2</sup>/second (a) T2WI (b) DWI (b value=0) (c) DWI (b value=400) (d) DWI (b value=800)



