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Introduction 
 Data reduction (usually performed via Principal Component Analysis, PCA) has been shown to be a critical step for accurate blind-source-separation in 
noisy data [1], performed via a method such as Independent Component Analysis (ICA).  Without data reduction (separating the data space into a signal-plus-noise 
subspace and a noise-only subspace), the ICA algorithm may get “stuck” in a local optimum and fail to successfully unmix the sources [1].  The correct number of 
sources must be retained in the signal-plus-noise subspace, thus producing a model order estimation problem.  Too many sources retained may result in unsuccessful 
unmixing, while too few sources retained will result in failure to detect the sources excluded from the subspace.  For ICA analysis of functional MRI (fMRI) data, the 
problem is exacerbated by the fact that noise in fMRI data is not “white”, but “colored” (e.g. having greater contribution at lower frequencies).  This makes PCA a sub-
optimal method for data reduction, and also renders techniques such as Bayesian model evidence optimization [2], which rely on the assumption of i.i.d. noise, less 
robust.  A data reduction method has been published [3] which uses an AR(1) model of the noise.  The method has been demonstrated to more accurately estimate the 
model order as compared to conventional techniques, and has the desired quality of the estimate model order not increasing with number of fMRI frames acquired.  
However, the method severely underestimates the model order at low SNR of the sources.  Here we present a technique for accurate estimation of the model order and 
extraction of the source subspace in the presence of colored noise and low source SNR. 
Theory 
 Assume the fMRI data has been grouped into a 2-dimensional T-X-N 
matrix, with T the number of time frames and N the number of voxels.  In the 
method of Cordes and Nandy [3], standard PCA is performed and the tail of the 
resulting eigenspectrum fit to the following function: 
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where λ(k) is the kth eigenvalue, and Δ is a parameter reflecting a shift in the 
eigenspectrum resulting from variance normalization of the time courses.  
Reference values for a and b (for a given Τ and N), for varying values of the 
AR(1) coefficient φ, are obtained via simulation.  The actual value of φ is 
estimated by comparison to the reference values.  The real eigenspectrum is 
compared to the theoretical noise eigenspectrum (computed using the above 
equation), and the model order estimated by determining where the values of the 
real eigenspectrum are greater than the noise eigenspectrum.  The method has 
been shown to outperform conventional model order estimation techniques, such 
as Minimum Description Length (MDL) or model order evidence [2].  However, 
when the sources have low SNR the real eigenspectrum fits the noise 
eigenspectrum quite well even for small eigenvalue numbers (Figure 1, left).  
This effect is due to the fact that for non-zero φ standard PCA is a sub-optimal 
method of data reduction.    

Therefore we propose a slightly different technique suitable for 
correct model order estimation even at low SNR.  Empirically, b is a minimum for lower values of φ (e.g. 
less autocorrelation in the noise).  Thus, the data is “pre-whitened” via pre-multiplying with the inverse of 
the Cholesky decomposition of the noise covariance for a given φ and standard PCA performed on the pre-
whitened data.  The eigenspectrum is fit to equation (1) and the optimal value of φ determined by 
minimization of b.  After the data is pre-whitened, there is significantly better separation between the noise 
and the real eigenspectrums (Figure 1, right).  Since the estimate of φ may not be exact, and the noise 
model may vary from AR(1), to determine the model order the coefficient of determination of fitting 
equation (1) to the putative noise eigenspectrum is computed, and compared to a simulated distribution of 
coefficients of determination for given N and T in order to estimate the log-likelihood function.  An 
Aikake’s Information Criterion (AIC)-like cost function is computed to optimize the model order. 
Materials and Methods 

 Datasets were simulated using routines written in IDL (Research Systems Inc., Boulder, CO).  
Background noise was simulated from a Gaussian distribution, with an AR(1) coefficient φ of 0 to 0.25.  
20000 voxels were used and the number of time points was 160.   50 sources were simulated using a 
Laplace distribution and mixed into the noise using a random mixing matrix, with SNRs varying from 0.3 
to 1.0.  The model order was estimated using the modified technique described above.  The extracted 
sources were then projected onto the subspace of (ground-truth) sources and the correlation coefficient 
computed as a measure of accuracy of source extraction, compared to the correlation coefficient obtained 
by projecting the entire dataset onto the source subspace (the maximum obtainable). 
Results 
 At low SNR and high autocorrelations, the proposed method performs very well (Table 1) relative to the previously published method [3], which for the 
same T and N and similar φ significantly underestimated the model order at low SNR.  The autocorrelations are found exactly, and the model order is fairly accurately 
estimated for SNR of 0.4 and above. 
Conclusion 

A new method for data reduction prior to ICA of fMRI data is proposed.  The method is particularly suitable for datasets where there is high intrinsic 
autocorrelation in the noise and low SNR in the sources.  Future research (data not shown) will investigate inclusion of a higher-order term in the exponential of 
equation (1) to better model eigenspectrums from more highly colored noise (e.g. φ > 0.4) 
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SNR # Sources 
Method 1 

# Sources 
Method 2 

R RMAX 

0.3 2 20 0.21 0.31 

0.4 3 41 0.34 0.39 

0.5 4 45 0.43 0.46 

0.75 12 51 0.59 0.60 

1.0 22 51 0.69 0.70 

Figure 1.  Comparison of theoretical (dashed, taken from Ref. [3]) 
and empirical (solid) eigenspectrums for φ = 0.25, T = 160 time 
frames, p = 50 sources, N = 20,000 voxels, SNR = 0.5, computed 
before (left frame) and after (right frame) prewhitening. 

Table 1.  Comparison of performance of the 
original data reduction methodology (Method 1, 
from Ref. [3]) and proposed methodology 
(Method 2) for φ = 0.25, T = 160 time frames, p = 
50 sources, N = 20,000 voxels.  (R = correlation 
of found sources from Method 2 with ground 
truth, RMAX = maximum possible correlation). 
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