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Introduction 
   “Sparsity of information” in data has been observed in many areas and 
exploited in various applications such as compression (JPEG), denoising [1] 
and fast data acquisition (compressed sensing in MRI [2,3]). In fMRI, there 
exist a large number of sources that affect the time course of a voxel. These 
include evoked and spontaneous brain activity, respiration, heart beat, head 
motion, scanner instability and other regional or global sources. However, a 
typical voxel time course is affected by only a subset of these sources (Fig. 
1) and provided that the number of sources is small  (e.g. ~ 15), one might be 
able to effectively model them to improve their identification and extract 
relevant information from the data. Here we explored this idea on fMRI data.  
 
Sparse Decoding 
   Based on our model, the fMRI data matrix (V = [v1 v2 … vn], where vi is the time course of ith voxel) can be decomposed into a source matrix (S = 
[s1 s2 … sm], t time points with m sources where m > t), and a sparse weight matrix (W = [w1 w2 … wn], a m x n matrix) (Fig 2). Our task is to find 
the source matrix that makes the sparse weight matrix as sparse as possible. This can be formulated as follows:  
 
 
where L is the maximum number of components in a sparse weight vector (from our assumption m >> L), and ||.||0 represents L0 norm which counts 
the number of components in a vector. A two-step approach can be deployed to solve this problem. First, for a given source matrix, the sparse weight 
matrix is found column by column using the sparse coding:  
 
 
This can be solved using a pursuit algorithm [4]. Once the 
sparse weight matrix is found, the source matrix is updated 
column by column. When the kth source vector (sk) to be 
updated, all the other vectors in S are frozen along with all the w 
rows except for the kth row (wT

k). Then a new sk and wT
k that 

minimize ||V – SW||2 can be found using a singular value 
decomposition (SVD). The whole process is iterated to reduce 
the total error. This method is called K-SVD [5] since it is a 
generalization of the K-mean [6] combined with the SVD. The resulting source matrix will represent the fMRI data with the sparsest combination.  
 
Experiment and Results 
   To validate this sparsity model for fMRI data, the sparse decoding was performed for two different 
types of datasets: 1) block design fMRI data (6 subjects, 4 with a visual stimulus paradigm, 1 with 
visual and motor, and 1 with visual, auditory and motor stimuli, 3.75 x 3.75 x 5 mm3, # slices = 20 to 
30, TR = 2 to 3 s, total scan time = 3 to 5 min, 3 T), and 2) resting-state data (3 subjects, eyes open, 
3.75 x 3.75 x 5 mm3, # slices = 30 slices, TR = 3 s, total scan time = 5 min, 3 T). The results were 
compared with a GLM (FEAT, FSL) for the task-evoked activity data and an ICA (MELODIC, FSL) 
for the spontaneous activity (resting-state) data. For the sparse decoding, the parameters were set to m 
= 150, L = 15, and # iteration = 100. To find the weight matrix, the matching pursuit algorithm [4] 
was used. For the comparison with conventional task activation fMRI analysis, the source vectors 
were correlated with the task regressor from the GLM. The activation map of the GLM and the sparse 
map (the spatial map of a given source vector) of the highest task-correlated source were compared. 
The results show that the mean correlation (6 subjects) between the maximally task-correlated source 
vectors and the task regressor was 0.86 ± 0.04. The activation map and the sparse map show a good 
correspondence (Fig. 3). In the resting-state data, the sparse decoding results (Fig. 4) show similar 
spatial patterns as found with ICA (results not shown).       
 
Discussion and Conclusion 
   Using the sparse decoding, the task-evoked activation maps and the resting-state maps were 
successfully retrieved. Hence the sparsity model is potentially applicable to fMRI data. Compared to 
ICA, this method has a few different features. First, it is more flexible in choosing the decomposition 
parameter such as m and L as long as n > m >> L and m > t. Another potential advantage is that one 
could include known regressors into the source matrix for a better decomposition (provided valid 
regressors are used). Also, when two or more source vectors are similar, one could merge them into 
one if necessary [5]. This merging process could be useful in improving the over-fitting problem.  
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