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Introduction 
Variations in breathing rate and depth have been shown to produce significant effects on the BOLD-weighted fMRI signal throughout gray matter[1-3]. These effects 
are present globally with low frequencies, within the range of frequencies of low-frequency BOLD fluctuations (LFBF), or functional connectivity. As a result, 
variations in respiration may be a confound in the analysis of resting-state fMRI data. A recent study proposed to account for this effect by monitoring subject breathing 
during resting fMRI scans and then regressing respiratory variation from the voxel timeseries[3]. That study observed coupling to breathing variation in the posterior 
cingulate and other regions of what has been termed the “default mode network“. This network of synchronized fMRI signal, as well as other synchronized networks 
post-hoc identified as potentially functionally relevant, is characterized by the LFBF of functional connectivity, which several recent studies have used as support in 
their characterization of those networks as functionally relevant[4]. The method proposed by Birn et al. creates a signal characterizing respiratory varation over time 
(RVT) by multiplying respiratory volume by respiratory rate to approximate total intake of fresh air. Increases in this signal are expected to result in decreases in end-
tidal CO2 and by its action as a vasodilator, decrease the fMRI signal. It is expected to take several seconds for this action to occur, due to a lag in perfusion from lungs 
to head and a lag in arterial capillary bed response to changed CO2 level. To account for this lag, the method performs a phase search over temporal shifts of RVT for 
every voxel timeseries and uses the phase shifted RVT timecourse with greatest negative correlation as the regressor. However, due to the low frequency of the RVT 
signal, the false positive rate from the search process can be expected to dramatically increase in regions containing high LFBF power. Therefore it is possible the phase 
search portion of the RVT correction produces incorrect lags in those regions. We perform a simulation study to show the lag search can fail in the presence of LFBF 
and show a range of lags detected in real fMRI data by the RVT algorithm. 
Methods 
The following three scans were performed on sixteen subjects. Scan1: anatomic whole-brain T1-weighted inversion recovery turboflash (MPRAGE), 120 axial slices, thickness 
1.2mm, Field-of-view (FOV) 256mm×256mm, matrix=256×128. Scans 2-3: whole-brain EPI scans: 132 volumes of 31-4mm thick axial slices TE/TR/flip = 29ms/2000ms/90o, 
matrix=64×64, 256mm ×256mm FOV, BW=125KHz. Physiologic data is measured in parallel for the EPI scans with a finger pulse plethysmograph and a respiratory bellows around 
the chest. The respiratory bellows data is postprocessed to produce the RVT estimator[3]. These two fMRI datasets were passed to the RVT correction. 
Simulation 
The following eight sources were injected at each voxel: five functionally relevant spatial network sources characterized by 
LFBF, two physiologic noise sources (parallel measured pulse and chest expansion data measured in real subjects) and an RVT 
noise source. The spatial distribution of the power of functional sources were determined as follows: each of 16 subjects’ resting 
state fMRI scans were spatially normalized, detrended and variance normalized, concatenated in the temporal dimension and 
passed to spatial ICA. Following ICA decomposition, spatial networks that were similar to those described by others [4] were 
identified. The spatial vectors for these sources were then saved for the purpose of injecting low frequency noise in the range of 
LFBF into the simulation. Physiologic spatial weight vectors were determined using PESTICA[5]. Using the same data, the SNR 
of the first seven sources were determined by regressing known sources of interest (five spatial ICA-determined timecourses 
relating to the five functional spatial networks and the parallel measured pulse and respiration for the physiologic regressors using 
the algorithm of RETROICOR [6]) and producing a mean and standard deviation of the fit coefficients for use in the simulation. 
However, RVT regression is hypothesized to be problematic, so we could not use regression to determine the approximate SNR. 
Therefore, the SNR was varied over a range below and approaching that of the other physiologic sources. Finally, the spatial 
distribution of RVT noise was created randomly, so as to minimize intentional overlap with the other sources. The lag for each 
simulation was chosen from a uniform random distribution ranging from 4 to 8 seconds. The injected sources, maps and lag 
chosen were saved for each simulation for comparison with the final fit maps. An SNR level of 50 relates to a percent signal 
variation level of 2.5%. 32 datasets are created for each SNR level and passed to the RVT correction, which was performed using 
the injected pulse and respiration data and the RVT estimator injected in the simulation. At each SNR level, the lags detected for 
each voxel are histogrammed, and this histogram is averaged across the 32 simulated datasets, giving an average lag curve for 
each SNR level. 
RVT Correction 
This estimator and the respiratory and pulse data are passed to the RVT correction, which is a modified form of the 
RETROICOR algorithm. RVT correction performs a voxelwise regression of pulse, respiration and various phase-lagged RVT 
estimates and searches for the most negative fit of RVT to the voxel timecourse (minimum is used since increases in RVT lead to 
decreases in fMRI signal, like the effect of a breath-hold increasing global fMRI signal). This phase searching is performed 
separately at each voxel, and the final lag and fit coefficient at each voxel is saved. The raw data is passed to this algorithm and 
the average lag detected in every voxel is histogrammed, and the maximum histogram bin is selected as the lag detected. This lag 
is histogrammed for the 32 fMRI datasets available. 
Results 
The averaged histogrammed lags detected in the simulated datasets by the phase-searching procedure are shown in 
Fig 1. Six levels of SNR are shown, and for SNR levels less than 30, there is no clear peak near the injected lag 
around 6 seconds. At and above this SNR, the average lag detected is near the injected lag. However, even at an SNR of 50, over 50% of lags detected are not within the 
4-8 second range of the injected lags. In real data, the situation is similar, with the average of lags detected giving a curve similar to the simulation curve with SNR=40. 
The maximum lag detected is histogrammed for the 32 fMRI datasets in Fig 2. Note that about 20% are negative and the rest spread from 0 to 15 seconds. 
Discussion and Conclusion 
Based on the simulation study, we can state that, due to the delay search process,  the RVT correction is sensitive to the strength of the artifactual presence in the data. 
Even for a fairly strong RVT effect similar to that observed by others [3], over half of voxels will end up with the wrong lag used in the regression. It is likely that, in 
the presence of strong LFBF signal, the delay is incorrectly identified and the result could be detrimental to the detection of LFBF effects after the correction. The 
distribution of lags observed in the human data was similar to that observed in the simulations, suggesting that the SNR of the RVT effect is not strong enough for the 
delay search process to be robust. Also, the average lag detected in most cases does not correspond to that expected by the primary hypothesized physical model of 
RVT; that RVT correlates with end-tidal CO2. A possible modification to the RVT algorithm may be to explicitly include ICA-derived functional network timecourses 
as covariates in the phase-searching regression and finally fixing the lag used in the regression to the global lag detected. 
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Fig 1: histogram of RVT lags detected in 
simulation at various levels of injected RVT 
SNR. Injected lag ranges from 4-8 seconds. 

Fig 2: histogram of RVT lags detected in 32 
fMRI datasets. 

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008) 2468


