Is T2* always the optimum Echo Time in BOLD fMRI? Challenging a common concept with a new Contrast to Noise Ratio BOLD model

P-F. Van de Moortele ${ }^{\mathbf{1}}$, K. Ugurbil ${ }^{1,2}$, and S. Lehericy ${ }^{1,3}$

${ }^{1}$ Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, ${ }^{2}$ Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, ${ }^{3}$ Center for NeuroImaging Research, CENIR, INSERM U610, University Paris 6, Paris, France

Introduction

It is generally accepted that BOLD response in Gradient Echo fMRI peaks at its maximum when the echo time (TE) matches $T_{2}{ }^{*}$, with optimum activation at TE= $T_{2}{ }^{*}$ [1,2]. Accordingly, matching TE with $T_{2} *$ in GE BOLD fMRI time series should improve activation detection. This is particularly important in areas where $T_{2} *$ values become shorter either because of susceptibility induced local B_{0} gradients, or within structures with high deposition of ferromagnetic particles such as the globus pallidus. Traditional BOLD models, however, have been challenged by some studies where similar fMRI activation detection were obtained at different echo times [35]. Furthermore, it has been demonstrated that a large fraction of noise in fMRI series has physiological origins and varies with TE and signal intensity [6]. In this paper, we propose a new model for BOLD functional Contrast to Noise Ratio ($C N R$) which explicitly accounts for the heterogeneous sources of noise. This model predicts that BOLD CNR varies very slowly as a function of TE. It also predicts that in some cases the optimal TE can actually be longer than T2*. Those findings may significantly impact existing strategies aiming at optimizing BOLD fMRI acquisition parameters.

Theory

In initial BOLD models [1,2] only a constant thermal noise σ independent to MR signal magnitude S was considered, thus functional CNR was assumed to be proportional to activation induced signal changes ΔS with $C N R=\Delta S \div \sigma=\mathrm{TE} \cdot \Delta R_{2}^{*} \cdot S$ and $S=S_{0} \cdot \exp \left(-\mathrm{TE} \cdot R_{2}^{*}\right)$ where S_{0} is S a TE=0 and $\Delta R_{2} *$ is the activation induced change in $R_{2}{ }^{*}$. In this approximation (with $\mathrm{TE} \cdot \Delta R_{2}{ }^{*} \ll 1$), CNR is max for $\mathrm{TE}=T_{2}{ }^{*}$, as shown in Fig. 1. Krueger et al. [6] have shown that the total noise σ_{tot} in fMRI BOLD series actually consists of multiple components: background noise σ_{0} (thermal and system noise) independent to S and TE, and physiological noise $\sigma_{\mathrm{P}}{ }^{2}$ which varies with TE and S and can be split into σ_{B}^{2} (BOLD) and σ_{NB}^{2} (non BOLD) sub-components: $\sigma_{t o t}=\sqrt{\sigma_{0}^{2}+\sigma_{B}^{2}+\sigma_{N B}^{2}}$ with $\sigma_{P}^{2}=\sigma_{B}^{2}+\sigma_{N B}^{2}$. Those terms can be written as: $\sigma_{B}=\sigma_{R_{2}^{*}} \cdot T E \cdot S$ (where $\sigma_{R 2^{*}}$ represents R_{2}^{*} baseline fluctuation) and $\sigma_{N B}=c_{2} \cdot S$ (where C_{2} is a scalar) [6]. Thus, $C N R=\Delta S \div \sqrt{\sigma_{0}^{2}+\sigma_{R_{2}^{*}}^{2} T E^{2} S^{2}+c_{2}^{2} S^{2}}$.
Here we introduce κ as the ratio, normalized with regards to TE, between the BOLD and non BOLD components of the physiological noise $\kappa=\left(\sigma_{B} \div \sigma_{N B}\right) \div T E=\sigma_{R_{2}^{*}} \div C_{2}$. After normalizing by $S_{0}, C N R$ can be written as : $\left.C N R=\mathrm{TE} \cdot \Delta R_{2}^{*} \cdot e^{-\mathrm{TE} \cdot R_{2}^{*}} \div \sqrt{\sigma_{0}^{2} \div S_{0}^{2}+c_{2}^{2} e^{-2 \mathrm{TE} \cdot R_{2}^{*}}\left(\kappa^{2} \mathrm{TE}\right.}+1\right)$.
Each noise component, shown in Fig. 2, has a different impact on activation detection. The BOLD component considerably smoothes the curve of $C N R$ against TE. The non BOLD component tends to shift the same curve to the right, so that for low values of κ the optimal TE becomes longer than $T_{2}{ }^{*}$.

Comparison with Experimental Reports

Our modified BOLD CNR model provides a rationale for apparently contradicting results from previous reports that we summarize hereby. Hyde et al. found cortical activation undistinguishable between 20 ms and 40 ms TE's in a motor taping task at 3 T [3]. They proposed a modified BOLD model but the latter did not include analytical noise formalism. However, such noise formalism has been introduced by Krueger et al. [6]. Gorno-Tempini et al. acquired fMRI series with two TE's (27ms and 40 ms) to recover BOLD activation in the temporal lobes[4]. Surprisingly, the reduced loss of signal at TE=27ms did not improve activation detection in susceptibility affected areas, whereas activations in non affected areas were still robustly detected at $\mathrm{TE}=27 \mathrm{~ms}$ compared with $\mathrm{TE}=40 \mathrm{~ms}$. Recently, Lehericy et al. in an attempt to optimize fMRI in basal ganglia structures with short $\mathrm{T} 2^{*}$, performed fMRI series with $\mathrm{TE}=28 \mathrm{~ms}$ and 42 ms , matching locally measured $T_{2}{ }^{*}$ of the Globus Pallidus and the Putamen respectively[5]. Although $\Delta S / S$ was strictly proportional to TE, there was no difference in activation detection between the two TE's. Moreover, the overall activated volume tended to always be larger at $\mathrm{TE}=42 \mathrm{~ms}$. In Fig. 3 we have estimated an average value of κ from Table 1 in [6], and we utilized noise measurements obtained in the study by Lehericy et al.[5] The resulting CNR simulated curves show: a) very slow $C N R$ variations as a function of TE and b) a shift to the right with maximum detection for $\mathrm{TE}=31 \mathrm{~ms}$ and 47 ms assuming a local $T_{2}{ }^{*}$ of, respectively, 28 ms and 42 ms . Thus, our BOLD CNR model effectively predicts higher activation detection for TE's longer than $T_{2}{ }^{*}$'s and is consistent with the aforementioned reports.

Discussion

We propose a modified BOLD CNR model accounting for heterogeneous sources of noise. This model predicts that activation detection varies only slowly with TE, mostly due to BOLD physiological noise, and that optimal TE can be longer than $T_{2}{ }^{*}$, due to non BOLD physiological noise. Those findings may have critical impact on BOLD acquisition parameters by relaxing some limiting

Fig 1. BOLD signal change ΔS as a function of TE for $\mathrm{T} 2^{*}=28 \mathrm{~ms}$ (solid blue line) and 42 ms (dashed red line). In intial BOLD models CNR was assumed directly proportional to ΔS.

In both Figs. 1, 2 and 3, $S_{0}=100$ and $\Delta R_{2}{ }^{*}$ is determined in order to obtain $\Delta \mathrm{S} / \mathrm{S}=2 \%$ at $\mathrm{TE}=\mathrm{T} 2 *$. In Figs. 1 and 3 the two vertical bars indicate $T E=28 \mathrm{~ms}$ and $\mathrm{TE}=42 \mathrm{~ms}$

Fig 2. BOLD noise components plotted against TE: σ_{0} (horizontal dotted line), σ_{NB} (dash-dot red line), σ_{B} (dashed green line) and resulting total noise σ_{TOT} (black solid line) based on σ_{P} measured in the Putamen (local T2*=42ms) and σ_{0} measured in the background in ref [5], merged with κ parameter derived from Krueger's study [6].

Fig 2. Dashed red line: CNR simulation with our BOLD model based on σ_{P} measured in the Putamen $\left(\mathrm{T}_{2}{ }^{*}=42 \mathrm{~ms}\right)$ from ref[5] and κ derived from[6]. Note the smoothness of the curve and its max at $\mathrm{TE}=47 \mathrm{~ms}$. Two additional curves are shown for $\mathrm{T} 2 *=28 \mathrm{~ms}$ (Globus Pallidus) with C_{2} derived either from the putamen (dotted line) or from $\sigma R_{2} * \approx \mathrm{TE}$, (dotted/dashed) because σ_{P} measures were not available in Globus Pallidus.
constraints, especially when $T_{2} *$ becomes shorter (e.g. higher magnetic field) or when TE increases (e.g. higher spatial resolution).
References: [1] R.S. Menon et al., MRM,30,380-6(1992) [2] S. Posse et al. MRM,42,87-9 (1999) [3] J. Hyde et al., MRM,46,114-25(2001) [4] K.L. Gorno-Tempini et al., Neuroimage, 15,136-42(2002) [5] S. Lehericy et al. , ISMRM, 2825 (2006) [6] G. Krueger et al.,46,631-7(2001) Acknowledgment: R01 MH070800, P41 RR008079, MIND Institute, P30 NS057091

