Optimizing DSC-MRI Acquisition Parameters to Minimize Extravascular T₁ and T₂* Effects Due To Contrast Agent Leakage: A Simulation Study

C. C. Quarles¹, S. Narayan¹, J. C. Gore^{1,2}, and T. E. Yankeelov^{1,2}

¹Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States, ²Departments of Biomedical Engineering, Physics and Astronomy, Vanderbilt University, Nashville, TN, United States

Introduction: Dynamic susceptibility contrast (DSC) MRI methods for assessing tumors are confounded by the extravasation of Gadolinium (Gd) agents into the extravascular extracellular space (EES) resulting in simultaneous changes in the EES T₁ and T₂ that can confound susceptibility-induced signal decreases and yield unreliable cerebral blood volume (CBV) and flow (CBF) measurements (1). To the best of our knowledge, a methodological study of these T_1 and T_2 EES relaxation interactions has not been reported. This is of note since the parameter estimates extracted from a DSC analysis could be significantly affected by both pulse sequence acquisition parameters as well as native tissue characteristics. In this contribution we perform a series of simulations in which we systematically vary relevant MRI pulse sequence and physiological parameters and assess the errors returned in CBF and CBV.

Methods: The gradient-echo signal after contrast injection can be written as shown in Eq. 1, where TR is the repetition time. TE is the echo time, T₁ and T₂ are the pre-contrast relaxation times, α is the flip angle, r₁ is the contrast agent (CA) T₁ relaxivity, v_p and v_e are the

12

PS (mL / 100g / min)

60

40

plasma and EES volume fractions, C_p(t) and C_e(t) are the concentrations of CA in the plasma and EES, and k_p and k_{EES} are the plasma and EES susceptibility

the

Figure 2 12 Α (mL / 100g) 10 8 6 CBV (60 Ŕ 20 60 -80 10 20 PS (mL / 100g / min) 12 в (mL / 100g) 10 8 6 CBV (10 20 PS (mL / 100g / min) 30

Results: Figure 1 shows the percent different between the CBV (A) and CBF (B) computed from ΔR_2 time curves with and without leakage effects computed for a pulse sequence using a $\alpha/TE = 15/20$, no CA preload and a pre-contrast T_1 of 1.5 sec. For all pre-contrast T_1 values this approach greatly overestimated the true CBV but provided highly reliable CBF estimates. Figure 2 shows similar plots (CBV only) for the pulse sequence using a α/TE =30/50, no CA preload and 1.0 (A) and 2.0 (B) secs pre-contrast T_1 s. For the 2 sec pre-contrast T_1 and PS values of approximately 17 ml / 100g / min the ΔR_2^{-1} time courses exhibited little or no leakage effects because the pulse sequence's sensitivity to EES T_1 and T_2^{-1} -induced changes

were such that these effects were balanced and simply canceled. For PS values lower than 17 ml / 100g / min the T_1 effects dominated the calculated ΔR_2^* time courses and resulted in an underestimation of the calculated CBV whereas above this PS value the T_2^* effects were greater and resulted in an overestimation of the CBV. Such balance points were found for many combinations of pulse sequence and physiological parameters. Figure 3 shows CBV (A) and CBF (B) results for the pulse sequence using a α /TE =60/50, CA preload and a 1.5 sec pre-contrast T_1 . Disregarding the extreme values of input parameters this approach could reasonably provide CBV measurements to within 20% of the actual value and 15% for CBF. The

success of this approach relies on its inherent balanced sensitivity to T_1 and T_2 leakage effects. The dual approach (Fig. 4) greatly overestimated the CBV (A) and slightly overestimated the CBF (B) for all values of PS and pre-contrast T₁.

Discussion: The observation that the EES T_1 and T_2^* leakage effects compete with one another and depend greatly on pre-contrast T_1 has important implications for the reliability of CBV and CBF estimates, post-processing based leakage correction methods (or lack thereof) and the attempts to estimate permeability (or K^{trans}) using DSC-MRI studies. In these simulations, pulse sequences that had a balanced sensitivity to EES T_1 and T_2 * leakage effects (e.g α /TE 60/50) yielded the most reasonable estimates of CBF and CBV even without post-processing correction methods. References: 1. Donahue, MRM 43:845-853; 2004.