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INTRODUCTION Tracer kinetic modelling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can be used to quantify 
drug effects in trials of cancer therapies1. Current practice involves computing parameters such as Ktrans at each tumour voxel and then summarising 
the tumour by the mean or median Ktrans value. The degree of drug action may then be determined by subjecting the average Ktrans values of 
participants� tumours to statistical analysis. The difference between (change in) average values before and after treatment is therefore used as a 
dissimilarity measure. The effects of anti-vascular/angiogenic compounds are often observed in particular locations within the tumour (e.g. on the 
periphery, where angiogenic activity is usually greatest). Summary statistics such as the mean or median may be relatively insensitive to these 
heterogeneous local changes, they neglect the spatial location of parameters and are unable to pinpoint where changes in specific tumours occur. This 
abstract proposes an alternative dissimilarity measure that is sensitive to drug action, depends upon both parameter values and their locations, and 
allows one to localise changes in parameter maps generated using tracer kinetic modelling. 

THEORY The Earth Mover�s Distance (EMD) measure2 originates in logistics and we use it to 
estimate the cost of transforming one parameter map into another. We shall explain the EMD problem 
in its original setting, and then show how dissimilarity between tracer kinetic parameter maps can be 
estimated using the EMD approach. 
 Imagine there are m warehouses and n stores. The i-th warehouse has a certain supply of goods, pi, 
and the j-th store demands a certain amount of goods, qj. Roads connect each warehouse to each store 
and there is an associated cost, ci,j, of moving one unit of goods from warehouse i to store j. The EMD 
problem is to find the cheapest flow of goods from warehouses to stores, F = (fi,j), which satisfies the 
demands within the supply budget. This can be posed as a linear programming problem and the reader 
is directed to Ref. 2 for mathematical background. EMD problems can be balanced (when supply meets 
demand) or unbalanced (when there is a mismatch). The value of the EMD dissimilarity function, d, is 
the total cost of moving the goods according to the optimal solution, normalised to treat balanced and 
unbalanced problems fairly:         (1)                    .=  where
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 The dissimilarity between a pair of tracer kinetic parameter maps (e.g. before and after treatment) can be quantified as the EMD cost of rearranging 
one map (denoted p) to match the other (denoted q): p defines a supply of Ktrans values and q defines a demand�voxels therefore replace the 
warehouses and stores. The voxel Ktrans values themselves are used in the optimization and enter Eqn. 1 implicitly via the solution F=(fi,j). The 
distances between supply and demand voxels are defined by placing the parameter maps within the same frame of reference (e.g. by aligning their 
centres or by rigid body registration) and setting ci,j to be the Euclidean distance between the i-th voxel in the supply map and the j-th voxel in the 
demand map. The spatial locations of the Ktrans values therefore enter Eqn. 1 implicitly via the cost matrix C=(ci,j). The sum of Ktrans values in the 
supply map will typically not equal the sum of those in the demand map, due to therapy- or randomly-introduced parameter variation, creating an 
unbalanced problem. While an EMD cost could be computed, important differences would not be able to be explained and would be neglected in the 
resulting EMD cost. We therefore normalise the Ktrans values in each map to sum to one, forcing problems to be balanced. In a typical study with 
tracer kinetic maps from two pre-treatment baseline visits, b1 and b2, and from a post-treatment visit, t, drug action can be investigated by comparing 
d(b1, b2) to d(b1, t) for each tumour. Heterogeneous local changes in parameter maps can be localised by visualising the flow, F, as a vector field. 
METHODS The space complexity of the implementation of the EMD algorithm we used was O(N2), where N 
is the number of voxels. This limitation prevented us from using full volumetric images, and in this initial 
work we manually selected single central slices of the tumours, chosen to be most similar to one another (note 
that this approach is likely to introduce noise into our results due to misregistration). 
 Four patients with 12 liver metastases were imaged using T1-weighted DCE-MR at 1.5T on a Philips Intera; 
the study was approved by the local research ethics committee and all patients gave written informed consent. 
Two pre-treatment baseline scans were performed in the week preceding dosing with an anti-angiogenic 
compound. A post-treatment scan was then performed and voxel-wise estimates of Ktrans were obtained using 
the extended Tofts model with a measured arterial input function3. 
 The EMD costs between the first and second baseline Ktrans maps�d(b1, b2)�and between the first baseline 
and post-treatment Ktrans maps�d(b1, t)�were computed for each tumour according to the method above. Due 
to known drug action, we would expect that d(b1, b2) < d(b1, t) and so a one-tailed paired t-test was performed. 
Vector fields were generated to visualise the flow for each paring. 
RESULTS Figure 1 shows a pre- and post-treatment tumour and a flow vector field. There was a statistically 
significant increase in mean EMD cost (1.2 vs. 1.6, p = 0.02; see Figure 2), indicating that the values and 
spatial �pattern� of Ktrans changed due to treatment. We hypothesise that the drug disrupts the active blood 
vessels on the outer rim, causing Ktrans values to decrease in this region, altering parameters� values and spatial 
arrangement. This is reflected by the EMD algorithm tending to move Ktrans values towards the centre of the 
tumour to explain the observed spatial homogenisation of the Ktrans values (see flow vector field in Fig. 1). 
CONCLUSIONS We have developed a new dissimilarity measure between pairs of DCE-MRI parameter maps. EMD cost is sensitive to known 
drug action, considers both the value and spatial location of parameters and allows change to be localized within specific tumours. Future work will 
focus on using full 3-D volumetric data, improving pre-registration and developing a way to subject the flow vectors to statistical analysis. 
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Figure 1 Pre- and post-treatment Ktrans

maps (left and middle) and a vector field
(right) which allows change in Ktrans

values to be localised. 

Figure 2 Changes in EMD cost
after dosing. Blue and red (dashed)
lines show tumours for which EMD
cost increases and decreases,
respectively. 
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