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INTRODUCTION Dynamic contrast-enhanced (DCE) magnetic resonance imaging is often used in trials of cancer therapies1. Current practice is to 
describe the contrast agent uptake curve using model-based (e.g. extended Tofts2) or model-free parameters (e.g. the initial area under the curve, 
IAUC) at each tumour voxel. The tumour may then be summarised as a whole by computing an average value of the chosen parameter. A change in 
such a summary statistic (such as mean or median values) after drug administration may be used as evidence of drug action. A problem with this 
approach is that these summary statistics do not consider that most solid tumours are spatially heterogeneous, or that drug-induced effects are also 
often spatially localised. Simple summary statistics neglect this potentially important spatial information. This abstract describes novel summary 
statistics that we have developed to capture this heterogeneity information using parameters’ values and spatial locations, and applies them to two sets 
of clinical DCE-MRI data. 
THEORY Heterogeneity in this work refers to the degree of spatial non-uniformity in a parameter map. Our statistics attempt to quantify this 
heterogeneity by accounting for both the distribution of parameter values and their spatial relationship. A 2-D grey-scale image can be thought of as 
being a surface in 3-D. By ‘extruding’ a 2-D image into a third dimension (representing grey-level intensity), heterogeneity can easily be visualised 
and methods of quantifying it developed. For example, an image with low heterogeneity will have a rather flat surface, while one with high 
heterogeneity will have a highly irregular surface. Surface characteristics can then be measured and used to assess heterogeneity. This idea can be 
extended to 3-D parameter maps: a 3-D Ktrans map (for example) can be extruded into a fourth dimension, forming an object enclosed by a hyper-
surface. We use 4-D binary arrays to represent the extruded objects and measure heterogeneity statistics on these. 
 We compute four heterogeneity statistics from the extruded 4-D parameter maps: surface area, volume, ratio of surface area to volume and box-
counting fractal dimension3,4. The box-counting dimension attempts to quantify object complexity and is computed by imposing regular grids of a 
range of scales on the object and investigating the relationship between scale and the number of grid elements (boxes) that are occupied by the object. 
METHODS We applied our heterogeneity statistics to two sets of clinical DCE-MRI data. In the first experiment, four patients with a total of 25 
liver metastases (n1=10, n2=1, n3=7, n4=7) underwent DCE-MR imaging at 1.5T on a Philips Intera System. The patients were scanned at two 
baseline visits in the week before dosing with an anti-angiogenic compound (though the first baseline scan was missing for patient 4), and then again 
after drug administration.. Routine quality assurance identified 18 suitable tumours. DCE-MRI data were converted to signal intensities and the 
extended Tofts model was fitted to each tumour voxel, yielding maps of Ktrans, vp and ve. 4-D Fractal and extrusion-based heterogeneity statistics were 
then computed for each parameter map. The tumours were assumed to be independent and non-parametric ANOVAs (Kruskal Wallis) were 
performed to investigate differences between the baselines and post-treatment scans for each parameter. 
 In the second experiment we investigated 
the ability of the heterogeneity statistics to 
identify meaningful heterogeneity in 
parameter maps computed for gliomas. 
Gliomas are histologically graded into four 
WHO grades5 on the basis of heterogeneity: 
high grade gliomas are characterised by 
areas of hypo- and hyper-cellularity 
corresponding to areas of necrosis and 
increased cell density, while low grades are 
less heterogeneous. Subjectively, such 
characteristics appear to be visible in DCE-
MRI images. Nine glioma patients were 
recruited and, before surgery, underwent 
DCE-MR imaging on a 3T Philips Achieva 
System. All tumours were histologically confirmed to be gliomas and were graded according to WHO criteria: there were 4 low grade (grade II) and 5 
high grade (grades III and IV) gliomas. The extrusion-based heterogeneity statistics were computed for each tumour as described above. Differences 
between heterogeneity statistics for the two groups were investigated using Wilcoxon rank sum tests. Both studies were approved by local research 
ethics committees and all patients gave written informed consent. 
RESULTS In the drug trial experiment, there were significant differences in surface area to volume ratio for extruded Ktrans and ve maps (p=0.0013 
and p=0.045 respectively); see Fig. 1. Post hoc testing revealed significant differences between first baseline and post-treatment scans (p=0.004) and 
second baseline and post-treatment scans (p=0.001), without Bonferroni-like corrections. As anticipated, there were no significant differences in 
heterogeneity statistics between the baseline scans. The difference in spread between the first and second baselines (Fig. 1) is explained by the 
missing data for patient 4. In the glioma experiment there were significant differences between the heterogeneity statistics as grouped by grade for: 
box dimension computed for extruded ve; surface area computed for extruded Ktrans and ve; and the volume of extruded ve parameter maps (all 
p<0.05); see Fig. 2. 
CONCLUSIONS This abstract has described approaches to quantifying heterogeneity in DCE-MRI parameter maps. Experiments using real data 
have shown that they are sensitive to the effects of an anti-angiogenic drug and glioma grade (which is related to heterogeneity). There was no 
combination of parameter and statistic that was sensitive in both experiments. However, it is interesting that heterogeneity statistics based upon ve 
were able to achieve significant discrimination in both experiments because this parameter is often assumed to have little physiological importance 
compared to Ktrans and vp.  
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Figure 1 Box plots showing how one of the 
heterogeneity statistics is sensitive to drug 
action. 

Figure 2 Box plots showing how heterogeneity 
statistics can distinguish between high and low grade 
gliomas. 
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