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Introduction: Noise level estimation in DTI plays a crucial role in determining outliers, fitting likelihood-based tensor models, and estimating the 
reliability of measured quantities. However, noise level estimation methods developed for other magnetic resonance techniques are often 
inappropriate for DTI acquisitions. For example, noise level cannot be directly computed from background regions with protocols using background 
suppression (e.g., CLEAR) or exhibiting spatially varying noise due to parallel imaging or variable coil sensitivity (e.g. SENSE). DTI images are 
commonly up-sampled by zero-padding the Fourier coefficient images, so the local noise structure is highly correlated. Thus, noise level estimation 
from local regions is difficult. Spatial variability and correlation limit the applicability of both the single image (based on background intensities) and 
double image (based on moments of Rician random variables) methods [1]. When the noise level specified for the RESTORE tensor estimation 
method is too low, too much data is excluded and the error rate suffers [2]. Conversely, when the noise level is specified too high, artifacts are not 
excluded and the error rate increases. Thus, accurate noise level specification is crucial. We develop a new estimation approach based on noise 
invariance to diffusion weighting and demonstrate that this technique improves the RESTORE method of outlier rejection and tensor estimation.   
 

Methods: In contrast to previous approaches, our method exploits repeated pairs of acquisitions while remaining robust against correlations in image 
intensity. For voxels with high signal intensity, the noise distribution is approximately Gaussian [3]. The mean intensity varies by spatial location as 
well as by diffusion weighting. However, the noise level (e.g., variance) of this distribution varies spatially, but does not depend on the diffusion 
weighting. Thus, the differences between repeated observations with the same diffusion weighting are also approximately Gaussian, but with zero 
mean and two-fold increased variance. Since the distribution of the difference of Gaussian random variables does not depend on the original mean, 
the set of differences from the reference and DW images may be treated as repeated observations from the same distribution. Accordingly, we form 
an estimator for the local noise level based on the Qn scale estimator (a robust standard deviation statistic) over the set of difference images [4]. The 
estimate is corrected for the increased standard. To extrapolate the noise field to low intensity voxels and to improve robustness against artifacts, we 
regularize the initial noise field using Chebyshev polynomial regression on non-background voxels with a third degree two-dimensional polynomial 
to create physically realistic noise level estimates. Chebyshev polynomials are numerically stable and have been previously used to model coil 
sensitivity profiles, which are dominant factors in determining the spatial characteristics of noise level [5].  
 

A realistic ground truth model was established by a standard method of moments estimator based on the 2nd and 4th Rician moments using 22 
acquisitions of a single control subject acquired in three sessions over a two week period at 1.5T (5 averaged b0’s, 30 diffusion weighted acquisitions) 
(Fig.1A). The proposed noise level estimation method was compared against existing methods in simulation using band limited Gaussian noise added 
in quadrature. Simulated acquisitions were developed based on the ground truth tensor model. To simulate artifacts, the intensity of one diffusion 
weighted image was randomly decreased by a factor of ten. The median level noise estimate over the brain was used to seed the RESTORE algorithm 
as implemented in CAMINO [6]. The mean squared error (MSE) of tensors estimated by RESTORE was evaluated when initializing the noise level 
by each of the estimation methods. For comparison, simulations were run with the noise level set to twice the truth model. 
 

Results: Our method of noise level estimation consistently led to more accurate estimates when compared against traditional estimators based on 
background intensity (single image), second moments (double image), 2nd and 4th Rician moments, and an artificially high noise level (2*Truth 
Model) (Table 1). The truth model closely resembles (Fig. 1A) our intermediate local noise level estimate (Fig. 1B), while our final estimate (Fig. 
1C) removes the impacts of vessels and artifact prone regions. The alternative methods produce a single noise level measure for the entire slice (Fig. 
1DEF), all three of which are lower than the true noise level over most of the brain. When used with RESTORE, the improved noise estimate reduces 
the number of both false rejections (exclusion of voxels without artifact) and true rejections (exclusion of voxels with simulated artifact) while 
reducing tensor MSE.  
 

Discussion: Our noise estimation procedure improves noise level estimation accuracy, does not depend on spatial correlations or the existence of a 
background region, and is robust against background suppression. It addresses complexities with spatially correlated noise, which is common in DTI 
due to up-sampling and interpolation. With the widespread use of parallel imaging methods, this noise level estimator – while specifically developed 

for tensor estimation– could also have far wider utility beyond diffusion tensor imaging. Our 
noise level estimation method could be readily adapted to work when more than two repeated 
scans are acquired (the sample standard deviation can be taken for each diffusion weighting 
and the median of these estimates is used) or when a single scan is acquired (a tensor can be 
fit at each voxel and the sample standard deviation taken over the residuals). In summary, our 
method is fully automated and robustly improves outlier identification leading to improved 
tensor estimation.  
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Table 1. Impact of Noise Level Estimation on RESTORE 
Noise Level 
Estimation Method 

Estimated 
Noise (a.u.) 

Pct. False 
Rejections 

Pct. True 
Rejections 

Relative Tensor 
MSE w/ RESTORE 

Truth Model 1521    1.0 ± 0.01 80.9 ± 0.3 1.00 
Proposed Method 1633 ± 16   0.6 ± 0.04 79.9 ± 0.5 0.99 ± 0.01 
2nd/4th Moments  1014 ±  9   5.9 ± 0.17 85.6 ± 0.2 1.11 ± 0.01 
Double Image   631 ±   3 19.1 ± 0.14 89.8 ± 0.1 1.26 ± 0.01 
Single Image   363 ±   1 39.0 ± 0.1 97.5 ± 0.1 1.49 ± 0.01 
2*Truth Model 3042 0.0 ± 0.0 56.4 ± 1.5 1.00 ± 0.01 
 

Fig 1. Noise Level Estimates (1 Example) 
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