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Introduction: Diffusion tensor imaging (DTI) is widely used to characterize white matter in health and disease. Previous approaches to the 
estimation of diffusion tensors have either been statistically suboptimal or have used Gaussian approximations of the underlying noise 
structure, which is Rician in reality. The most prevalent tensor estimation method, the log-linear minimum mean squared error (LLMMSE) 
approach [1], assumes independently, log-Gaussian noise. Sijbers et al. [2] presented an ML approach for Rician bias compensation of single 
MR images, and Koay et al. [3] demonstrated an exact solution and extended the method for images from multiple coils. Jones et al. [4] 
presented an estimation method that incorporates noise level estimation. Salvador et al. [5] reviewed distribution assumptions and described a 
weighted least squares procedure for addressing non-Gaussianity. These methods do not take into account either (1) the propagation of Rician 
noise into the tensor domain or (2) the dependence between observed attenuations caused by the use of common reference scans. These 
systematic differences can cause quantities derived from these tensors — e.g., fractional anisotropy and apparent diffusion coefficient — to 
diverge from their true values, potentially leading to artifactual changes that confound clinically significant ones. Recent developments with 
Diffusion Tensor Estimation by Maximizing Rician Likelihood (DTEMRL) showed that tensor estimation can be performed by considering 
the joint distribution of all observed data in the context of an augmented tensor model that accounts for Rician noise [6]. This abstract 
presents a robust extension of DTEMRL (rDTEMRL) designed to improve reliability in low SNR and artifact prone applications.   
 

Methods: To improve numeric stability and to prevent non-physical solutions, DTEMRL incorporates a robust characterization of positive 
definite tensors and an estimator of underlying noise variance specifically developed for repeated DTI acquisitions. We observe the most 
common modes of failure for DTEMRL are due to extreme value observations (outliers). With limited data, the strict ML approach favors 
selection of an incorrectly high noise level, which, in turn, corrupts tensor estimates. To address this problem, we make three modifications to 
the original algorithm. First, we generalize the noise estimation procedure to operate on a single DTI acquisition as follows:  a tensor is fit 
with LLMMSE at each voxel, the sample standard deviation is taken over the residuals, and this is regularized with a coil sensitivity model. 
Next, we introduce Gaussian priors on the noise level based on the estimated noise field with a Bayesian a posteriori approach. The mean of 
the prior is set to the estimated noise level while the standard deviation of the prior is proportional to the square of the SNR, so that the 
impact of the prior diminishes at high SNR. Finally, we utilize a Huberized (truncated) likelihood measure to reduce the impact of artifacts on 
tensor estimation. The truncation point is determined adaptively from the likelihood distribution, and set to exclude observations that fall 
outside two standard deviations from the median likelihood.  
 

Simulation experiments were performed with prolate tensors (i.e., tensors with identical second and third eigenvalues). The maximum 
(parallel) diffusivity was set to 2x10-3 mm2/s and the radial diffusivities were adjusted to create tensors with fractional anisotropies of 0, 0.2, 
0.5, and 0.8. Artifacts were simulated by randomly attenuating one diffusion weighted (DW) image by a factor of 10. Simulated DTI studies 
were conducted at a b-value of 1000 s/mm2 with 30 DW and 5 non-averaged reference images. Additionally, 22 repeated in vivo scans 
(acquired over 3 days) of a control subject (male, 24 y/o) were individually analyzed with both LLMMSE and rDTERML. Briefly, the data 
were acquired with a spin echo EPI sequence (TR/TE=3632/100, 0.9375 in plane, 2.5 mm slice thickness) on a 1.5T system (Intera, Philips 
Medical Systems, Best, The Netherlands).  
 

Results: Simulations indicated improved performance of rDTEMRL over LLMMSE in the absence of artifact (Fig. 1A) as low as 10:1 for 
gray matter (GM) like voxels (FA≤0.2) and 5:1 for white matter voxels (FA>0.2). In the presence of artifact, simulations demonstrate 
improvements in mean squared error across all noise levels studied (Fig. 1B). In vivo data (Fig. 2) show substantially improved performance 
in the major WM tracts. The degree of reliability improvement can be appreciated from Fig. 3 (showing twenty two tensors estimated at a 
single location within the WM).  
 

Discussion: rDTEMRL considerably improves the reliability of diffusion tensor estimates over the traditional methodology by exploiting the 
Rician noise distributions of MR data. The method is robust to low SNR and substantial 
artifact.  As with DTEMRL, rDTEMRL does not use any spatial regularization in the 
estimation process, and it is possible that spatial regularization could further improve these 
results. An important question for further study is how rDTEMRL relates to other robust 
tensor estimation methods; understanding the relative benefits and tradeoffs between M-
estimator methods could lead to improved robustness and performance across the SNRs.  
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