
Figure 1: Diffusion Coefficient from ME and 
BE analysis
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Figure 2: Signal Fraction from ME and BE 
analysis
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Figure 3: Diffusion Coefficient from NNLS 
analysis
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Figure 4: Signal Fraction from NNLS analysis
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Introduction 
A primary histologic feature that indicates malignant progression of glioma is an increase in cell density.  Several studies have shown that the monoexponential 

apparent diffusion coefficient appears to be linked to cell density [1]. Other studies have used biexponential [2] or unconstrained multiexponential models[3] to extract 
multiple components from cells and tissue. Because of the complex structure of the cellular and extracellular components that comprise tissue, it is unlikely that the 
monoexponential model reflects the totality of the diffusive processes in tumors. In order to tease out which diffusive properties are directly linked to cell density, we 
created a simple model for tissue using varying densities of astrocytoma cells to better understand the effects of cell density on diffusion coefficients.   
Methods  
SAMPLE PREP: Cultured genetically engineered astrocytoma cells [4] were trypsinized,  washed in  D2O based Phosphate Buffered Saline (D-PBS), and centrifuged at 
400×g at 5°C.  Two percent (w/v) low melting point agarose (Sea Prep, Lonza, Basel, Switzerland) was made with D-PBS and TSP/D2O.   Cells and agarose were 

mixed to create samples that were 0%, 25%, 50%, 75% and 100% cells (N=3 each). The cell and agarose mixtures were loaded into a dual-open-ended 5mm NMR tube 
with susceptibility matched plugs (New Era, Vineland, NJ).  Each sample was placed on ice and allowed to gel for at least 2 hours prior to performing NMR 
measurements.  
NMR MEASUREMENTS: All NMR experiments were performed at 10°C on a 500MHz Varian spectrometer equipped with 60G/cm z-gradients.  Diffusion experiments 
were performed in the z-direction using the DgcsteSL sequence: δ = 3ms, Δ = 50ms, TE=6ms, TR=7s, NEX=1, spin lock = 2ms.  Thirty-two linearly spaced b-values 
were used: for 100%, 75%, and 50% samples b=10 to 9000s/mm2; for 25% samples b=10 to 2800s/mm2; and for 0% samples b=10 to 1095s/mm2.   
DATA ANALYSIS: The water peak heights were measured at 4.9ppm using ACD (Toronto, Canada) and were used to construct diffusion decay curves.  The resulting 
exponentials were analyzed using monoexponential (ME), biexponential (BE), Non-Negative Least Squares (NNLS) [5] algorithms in MATLAB (MathWorks, Natick, 
MA). The general fit equation was 
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where S/S0 is the normalized signal intensity, D is the diffusion coefficient, fa is the fraction of signal associated with a particular D, b is the diffusion weighting, and n 
is the number of components.  For monoexponential fits n=1, and for biexponential fits n=2 . The variable n was not assigned a priori for NNLS , but was one of the fit 
parameters.  Only components that contributed more than 10% to the signal (fa > 0.10) were assumed to be true components rather than errors arising from noise in the 
model.  Spearman Rank correlation with a significance level of p≤0.01 was used to detect correlations with cellularity while controlling for multiple comparisons. 
Results  

The diffusivity from the ME fit (Figure 1, blue) decreased with increasing cell volume (p<0.001).  The BE analysis successfully fit two components (Figure 1, 
green and red) for 50%, 75%, and 100% cells, but only detected one component for 0% and 25% samples.  In Figure 1, the fast diffusion coefficient (green) decreased 
with increasing cell density (p<0.001), while slow diffusion (red) remained constant (p=0.22).  Figure 2 shows that, the signal fraction for fast diffusion (green) 
decreased (p<0.001) and the slow diffusion fraction increased (p<0.001) with increasing cellularity. 

Tthe NNLS fit (Figure 3) one component for 0% and 25% cells, three components for 50% and 75% cells, and two components for 100% cells.  The slow (p=0.32) 
diffusion coefficients stayed relatively constant across all samples, while the fast (p=0.05) tended to decrease with increasing cellularity. The intermediate coefficient 
(yellow) decreased with increasing cell density (p=0.01).  Figure 4 shows that the fast signal fraction decreased (p<0.001), the slow fraction increased (p=0.001) and the 
intermediate fraction remained constant (p=0.10).  

Discussion 
As expected, all three methods detected a single 

diffusion component in the homogenous 0% sample, which 
is pure agarose.  The 25% cell samples were also found to 
have one component despite the presence of cells; however 
the diffusion coefficient was reduced.  

We were able identify two components with BE analysis 
for the 50%, 75%, and 100% samples, and the introduction 
of cells contributed a slower diffusion component. The 
fractions of both components changed with cell density but 
the coefficients remained constant.   

 Using the unconstrained NNLS analysis that did not 
impose a fixed number of components on the model, we 
were able to identify three components for the 50% and 75% 
samples and two components (intermediate and slow) for the 
100% samples.   The 0% (pure agar) samples only featured a 
fast diffusion component. The slow and fast diffusion 
coefficients (Figure 3) were not significantly correlated with 
cell density; however, the intermediate component did have 
an inverse relationship with cell density.   

This data suggests that the slow component appeared to 
be associated with the cells.  Further, the monoexponential 
diffusion was dominated by the fast diffusion component.  
Interestingly, the fast diffusion tracked well with agar 
presence. 

For future studies, we will further test the relationships 
we saw here by changing the diffusive properties of the agar 
(e.g. concentration) and the cells (e.g. volume). 
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