Absolute Quantification of Pulmonary Perfusion Using Intravenous Injection of Hyperpolarized ¹²⁹Xe

H. E. Möller¹, B. Driehuys², J. Pollaro², and L. W. Hedlund²

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ²Duke University Medical Center, Center for In Vivo Microscopy, Durham, NC,

United States

Introduction: Increasingly, regional perfusion information is desired for effective clinical management of chronic pulmonary disorders. There is a strong need for such imaging techniques to be absolutely quantifiable, particularly for the evaluation of therapeutic drug response. We have recently suggested a novel means of lung perfusion imaging based on intravenous injection of hyperpolarized (HP)¹²⁹Xe dissolved in saline (1). In this study we demonstrate that extension to absolute quantification is feasible.

Methods: Animal preparation (5 Fischer 344 rats, 330-425g) according to a Duke approved IACUC protocol included anesthesia (ketamine/diazepam injection), peroral intubation, and ventilation on a constant-volume ventilator (respiration frequency, $f_{resp} = 60$ bpm, tidal volume, $V_T = 2.6$ mL). HP ¹²⁹Xe, enriched to 83% was produced in batches of 120 mL at $P\approx12\%$ using a prototype commercial polarizer (MITI, Durham, NC). ¹²⁹Xe imaging and spectroscopy used a 23.6MHz linear birdcage coil (*L* 8cm, ϕ 7cm) in a 2T, horizontal, 15cm clear-bore magnet with shielded gradients (180mT/m) and GE Excite console. HP ¹²⁹Xe was dissolved in 30-40mL of half-concentrated saline and shaken for 20 s. For imaging, 5 mL of saturated saline was withdrawn and injected over a period of 15 s into the rat's tail or jugular vein while respiration was suspended. GRE images (no slice selection, α 15°, *TR* 250ms, bandwidth 4kHz, matrix 64×64, FOV 7.5cm) were acquired over 16 s starting 5 s after injection. Spectra were acquired for 30 s (α 5-30°, *TR* 125-250ms) to study dynamics of the HP ¹²⁹Xe resonances.

Modeling of the ¹²⁹Xe gas signal dynamics (*cf.* Fig. 1 & eqns. below) was based on an adaptation of the Kety-Schmidt theory considering an arterial input function given by the pulmonary perfusion, Q, and the arterial ¹²⁹Xe magnetization, m_{za} , exchange between bolus and alveolar space, described by partition coefficient, λ_{bolus} , and signal loss due to venous outflow, respiration, and alveolar T_1 relaxation. The combined contributions to this signal loss are described by an apparent relaxation time, T_{1app} . Finally, destruction of magnetization due to RF pulsing was also considered.

Results and Discussion: Examples of fitting results in two rats are given in the Figs. 2 and 3 and in the Table. As expected, the transit time, δ , for the bolus to arrive in the pulmonary capillaries was shorter for the jugular vein than for the tail vein. Assuming total alveolar volumes of V_A =7.6-8.6 mL (2), the obtained estimates of the global perfusion are consistent with literature data (3) for the cardiac output (1.8 mL/s in 320g rats).

Conclusions: By selectively imaging gas-phase ¹²⁹Xe following intravenous injection, qualitative maps pf pulmonary perfusion (Fig. 4) can be obtained whereas analysis of a series of gas-phase spectra permit absolute quantification of global lung perfusion. Combining both informations allows scaling of the image to obtain quantitative regional perfusion information.

References: (1) B Driehuys, Proc ISMRM 15,455,2007; (2) WR Stahl, Adv Biol Med Phys 9,355,1963; (3) MV Andrade, Comp Biochem Physiol C138, 97, 2004.

Acknowledgments: NCRR P41 05959, NHLBI 2R01HL55348, The GEMI Fund 2005