Pulmonary Oxygen M apping with *He MRI at Very-L ow-Field
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I ntroduction

A key measure of the effectiveness of pulmonary ventilation and perfusion is the alveolar partial pressure of oxygen, poO,. MRI using
hyperpolarized *He has, in recent times, provided the first regionally-selective measure of PO, [1-3], which has been correlated with
the traditional ventilation-to-perfusion ratio, V/Q [2]. paO; is derived from the attenuation in the SHe MRI signal over time, and for
accuracy, requires precise knowledge of the RF excitation flip-angle. However, in clinical MRI systems operating at high field and
frequency, this measurement has proven non-trivial, due to coil-loading effects of different human subjects and the general B,
inhomogeneity of the RF coils used at 1.5 and 3.0 T. As a result, RF flip-angle calibrations must be incorporated into every
measurement, resulting in numerous variations of this technique, and requiring the use of non-renewable magnetization in the flip-
angle determination in every experiment, reducing the sensitivity of the technique to p,O, [3]. We employ an open-access, very-low-
field human MRI system to study pulmonary function with subjects in a variety of postures [4-6]. However, operation of this system
at 210 kHz has resulted in a simplification of the poO, measurement technique in comparison to high-field methods.

Methods

Our open-access human MRI system was optimized to operate at By = 6.5 mT (65 G) applied field, allowing *He MRI at 210 kHz. The
magnet design allows us to use a highly-homogenous solenoidal RF coil, while the very-low Larmor frequency makes coil-loading
effects negligible. For phantom measurements, a Tedlar bag was filled with ~ 500 cm’ of polarized *He gas directly from a home-
built spin-exchange polarizer, or the ~ 80 cm’ optical pumping cell from the polarizer was placed in the imager. We acquired 2D
gradient-recalled-echo images, without slice selection, over a 50 cm FOV, data size 128 x 32, TR/TE = 64/10 ms, NEX = 1, FA = 3°,
in ~ 2 seconds. Multiple 2D images were acquired with 10 ms inter-image delays to calculate excitation flip-angle maps from the *He
MRI signal decay. Spectroscopic flip-angle calibrations were performed at different locations in the RF coil using the same method
but without spatial localization. pO, maps were obtained from the same imaging protocol but with 5 s inter-image delays.

Results
Spectroscopic and spatially-localized flip-angle measurements on *He phantoms are shown in Figure 1.
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Figure 1: a) *He flip-angle derived from spectroscopic measurements as a glass cell of *He was placed at different positions along the
X axis of the human chest coil. b) Calculated flip-angle map obtained from *He signal decay in 8 successive images, obtained from
*He gas in a Tedlar bag. The scale bar values have units of degrees. c¢) *He signal decay from one of the pixels in the image in b).
Discussion

The solenoid RF coil design is provides a considerably more homogeneous B, environment than the coil designs used in most clinical
MRI scanners. Our novel magnet design allows subjects to be imaged while horizontal or upright, using a solenoid RF coil. Fig. 1a)
shows the measured and calculated variation in flip-angle along the length of our chest coil. Variation is less than 10%, and well
characterized. Therefore, the flip-angle map shown in Fig. 1b) demonstrates minimal B, variation in the central 20 X 20 cm region of
the coil, exhibiting a flip angle of 3.9 + 0.2°. A subsequent MRI-based pO, measurement on a phantom filled with pO, = 68 + 5 torr
yielded an average value throughout the bag of 60.5 + 7 torr, without the need to perform an in-situ flip-angle calibration. As we have
shown previously that RF coil loading effects are minimal and reproducible at a Larmor frequency of 210 kHz [6], operation at such a
low frequency permits a simplified p,O, measurement procedure, possibly with increased accuracy in the poO, measurement.
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