Pulmonary Oxygen Mapping with ³He MRI at Very-Low-Field

R. W. Mair¹, R. N. Scheidegger^{1,2}, L. L. Tsai^{2,3}, M. S. Rosen^{1,4}, and R. L. Walsworth^{1,4}

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, United States, ²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States, ³Harvard Medical School, Boston, MA, United States, ⁴Dept of Physics, Harvard University, Cambridge, MA, United States

Introduction

A key measure of the effectiveness of pulmonary ventilation and perfusion is the alveolar partial pressure of oxygen, p_AO_2 . MRI using hyperpolarized ³He has, in recent times, provided the first regionally-selective measure of p_AO_2 [1-3], which has been correlated with the traditional ventilation-to-perfusion ratio, V/Q [2]. p_AO_2 is derived from the attenuation in the ³He MRI signal over time, and for accuracy, requires precise knowledge of the RF excitation flip-angle. However, in clinical MRI systems operating at high field and frequency, this measurement has proven non-trivial, due to coil-loading effects of different human subjects and the general B_1 inhomogeneity of the RF coils used at 1.5 and 3.0 T. As a result, RF flip-angle calibrations must be incorporated into every measurement, resulting in numerous variations of this technique, and requiring the use of non-renewable magnetization in the flip-angle determination in every experiment, reducing the sensitivity of the technique to p_AO_2 [3]. We employ an open-access, very-low-field human MRI system to study pulmonary function with subjects in a variety of postures [4-6]. However, operation of this system at 210 kHz has resulted in a simplification of the p_AO_2 measurement technique in comparison to high-field methods.

Methods

Our open-access human MRI system was optimized to operate at $B_0 = 6.5$ mT (65 G) applied field, allowing ³He MRI at 210 kHz. The magnet design allows us to use a highly-homogenous solenoidal RF coil, while the very-low Larmor frequency makes coil-loading effects negligible. For phantom measurements, a Tedlar bag was filled with ~ 500 cm³ of polarized ³He gas directly from a home-built spin-exchange polarizer, or the ~ 80 cm³ optical pumping cell from the polarizer was placed in the imager. We acquired 2D gradient-recalled-echo images, without slice selection, over a 50 cm FOV, data size 128×32 , TR/TE = 64/10 ms, NEX = 1, FA = 3°, in ~ 2 seconds. Multiple 2D images were acquired with 10 ms inter-image delays to calculate excitation flip-angle maps from the ³He MRI signal decay. Spectroscopic flip-angle calibrations were performed at different locations in the RF coil using the same method but without spatial localization. pO_2 maps were obtained from the same imaging protocol but with 5 s inter-image delays.

Results

Spectroscopic and spatially-localized flip-angle measurements on ³He phantoms are shown in Figure 1.

Figure 1: a) ³He flip-angle derived from spectroscopic measurements as a glass cell of ³He was placed at different positions along the *x* axis of the human chest coil. b) Calculated flip-angle map obtained from ³He signal decay in 8 successive images, obtained from ³He gas in a Tedlar bag. The scale bar values have units of degrees. c) ³He signal decay from one of the pixels in the image in b).

Discussion

The solenoid RF coil design is provides a considerably more homogeneous B_1 environment than the coil designs used in most clinical MRI scanners. Our novel magnet design allows subjects to be imaged while horizontal or upright, using a solenoid RF coil. Fig. 1a) shows the measured and calculated variation in flip-angle along the length of our chest coil. Variation is less than 10%, and well characterized. Therefore, the flip-angle map shown in Fig. 1b) demonstrates minimal B_1 variation in the central 20 × 20 cm region of the coil, exhibiting a flip angle of $3.9 \pm 0.2^{\circ}$. A subsequent MRI-based pO_2 measurement on a phantom filled with $pO_2 = 68 \pm 5$ torr yielded an average value throughout the bag of 60.5 ± 7 torr, without the need to perform an in-situ flip-angle calibration. As we have shown previously that RF coil loading effects are minimal and reproducible at a Larmor frequency of 210 kHz [6], operation at such a low frequency permits a simplified p_AO_2 measurement procedure, possibly with increased accuracy in the p_AO_2 measurement.

Acknowledgements

We acknowledge support from NSF grant PHY-0618891 and NIH grant R21-EB006475-01A1.

References

- 1. A. J. Deninger, et. al., NMR Biomed. 13, 194-201 (2000).
- 4. L. L. Tsai et. al., Proc. 15th ISMRM, 15, 943 (2007).
- R. R. Rizi et. al., *Magn. Reson. Med.*, **52**, 65–72 (2004).
 S. J. Kadlecek et. al., *Prog. NMR Spect.*, **47**, 187-212 (2005).
- L. L. Tsai et. al., *Acad. Radiol.*, in press (2007).
 L. L. Tsai et. al., *J. Magn. Reson.*, submitted (2007).