First studies with hyperpolarized [2-13C]pyruvate in the rat brain

I. Iltis¹, D. K. Deelchand¹, M. Marjanska¹, C. Nelson¹, K. Ugurbil¹, and P-G. Henry¹

¹Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States

Introduction. Carbon-13 NMR studies with hyperpolarized molecules may result in up to 10,000-fold increase in sensitivity (1), potentially allowing the detection of metabolic events in real-time *in vivo*. Several studies have been reported with $[1^{-13}C]$ pyruvate (2,3), but to our knowledge, there has been no report about hyperpolarized $[2^{-13}C]$ pyruvate. In this work, we hyperpolarized $[2^{-13}C]$ pyruvate and measured the resulting ¹³C signals from labeled metabolites in the rat brain *in vivo*.

Materials and Methods. Three fasted male Sprague-Dawley rats were anesthetized with isoflurane and surgically prepared for intravenous injection of hyperpolarized $[2-^{13}C]$ pyruvate and physiology monitoring. Hyperpolarized $[2-^{13}C]$ pyruvate was obtained by DNP technique with OX63 trityl radical and dissolved in 4 ml of water/EDTA using a HyperSense system. Two to 2.2 ml of the hyperpolarized solution was injected into the animals. NMR experiments were performed on a horizontal 9.4T Oxford magnet equipped with a Varian INOVA console. ¹³C spectra were acquired using pulse-acquire (flip angle 4.5° at coil center, TR = 3sec) with a surface coil positioned above the head of the animal.

Results. The enhancement factor for $[2^{-13}C]$ pyruvate at the time of measurement was found to be 1,500 on phantom (compared to the thermal equilibrium signal). In the rat brain *in vivo*, resonances from both $[2^{-13}C]$ pyruvate (206.71 ppm) and $[2^{-13}C]$ pyruvate hydrate (95.57 ppm) were readily observed seconds after injection. After averaging the first 10 scans in the time course, a small signal corresponding to $[2^{-13}C]$ pyruvate (70.13 ppm) could also be observed (Figure 1a). The apparent T_1 was 14.6 ± 0.5 s for $[2^{-13}C]$ pyruvate (Figure 2). This observed decay results from T_1 losses of $[2^{-13}C]$ pyruvate, and also presumably from exchange with $[2^{-13}C]$ lactate, which is expected to have a much shorter T_1 ($\sim 1 - 1.2$ s) (4) due to the presence of the attached proton. The short T_1 of lactate might also explain the smaller signal intensity observed for this metabolite.

Discussion. $[2^{-13}C]$ pyruvate is expected to result in the formation of $[1^{-13}C]$ acetylCoA, which enters the TCA cycle to form $[5^{-13}C]$ citrate and eventually $[5^{-13}C]$ 2-oxoglutarate and $[5^{-13}C]$ glutamate. However, in the present study, we did not observe signals arising from these metabolites or any TCA cycle intermediates. Similarly, a previous study reported no signal from metabolites in the brain after infusion of hyperpolarized $[1^{-13}C]$ acetate (5), although it is also expected to result in formation of $[1^{-13}C]$ acetylCoA (in astrocytes). One hypothesis for this absence of signal from AcetylCoA or TCA cycle intermediates is that the hyperpolarized molecules bind to enzymes such that the T_1 would become short enough to cause complete destruction of hyperpolarization.

Conclusion. We successfully hyperpolarized $[2^{-13}C]$ pyruvate and detected resulting hyperpolarized signals *in vivo* in the rat brain after iv injection of the compound. A small signal from $[2^{-13}C]$ actate was observed as a by-product of $[2^{-13}C]$ pyruvate.

regure 1. a) spectrum acquired in a fat (number of scans, 10, average of 30 seconds). ¹³C-Formate signal comes from the external reference used for pulse calibration. b) Summary of chemical shifts values for observed resonances.

References. 1. Ardenkjaer-Larsen JH, et al. Proc Natl Acad Sci USA 2003;100:10158-10163. 2. Golman K, et al. Cancer Res 2006;66:10855-10860. 3. Kohler SJ, et al. Magn Reson Med 2007;58:65-69. 4. Choi IY, et al. Magn Reson Med 2000;44:387-394. 5. Comment A, et al. Proceedings ISMRM 2007; #369:83.

Acknowledgements: This work was supported by BTRR-P41 RR008079, Keck Foundation, P30 NS057091, R01-NS38672.