Is it possible to measure water exchange using conventional DCE-MRI?

D. L. Buckley¹, L. E. Kershaw¹, and G. J. Stanisz^{2,3}

¹Imaging Science and Biomedical Engineering, University of Manchester, Manchester, United Kingdom, ²Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, ³Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Introduction. In recent years, there has been interest in how water exchange might affect tracer kinetics experiments performed using dynamic contrastenhanced (DCE) MRI [1,2]. Most evidence to date suggests that vascular-interstitial water exchange is relatively slow (less than 7 s⁻¹ [1]). There is no consensus on the rate of cellular-interstitial (also known as transcytolemmal) water exchange. Landis et al. [2] have suggested that this exchange may significantly influence the assessment of contrast agent concentration ([Gd]) in DCE-MRI experiments. Contrast agent enters the interstitium from the plasma and increases the relaxation rate of interstitial water while the T_1 of water in the cell remains the same; this may lead to significant transient sorties away from the pre-contrast water exchange state. Such an effect can result in underestimates in [Gd] and subsequent inaccuracies in estimates of tracer kinetics parameters [2]. Whether these effects are significant in a typical DCE-MRI experiment is the subject of debate.

MR signals obtained from muscle are potentially sensitive to cellular-interstitial water exchange and the small vascular volume of muscle minimizes the confounding effects of vascular-interstitial water exchange. Following the lead of Landis et al [2], we undertook a study of human muscle to address two principal aims. Firstly, we assessed the maximum possible effects of cellular-interstitial water exchange on measurements of tracer kinetics parameters obtained using a clinically-relevant DCE-MRI protocol by analyzing our data using fast exchange limit (FXL) and slow exchange limit (SXL) models. Secondly, we used the shutter-speed (SS) approach [2] (also called BOLERO [3]) to estimate the rate of cellular-interstitial water exchange in muscle.

<u>Methods</u>. Six patients (aged 60-77 years, mean 68 years) undergoing MRI for the assessment of benign prostatic hyperplasia were examined [4]. The study was performed at 1.5 T (Philips Intera) using a cardiac phased-array coil for signal detection. A volume including the prostate and internal obturator muscles was selected for quantitative imaging. The T_1 of tissues in this volume was measured using a multi-shot 3D IR-TFE sequence. Subsequently, a 3D FLASH sequence with a 30° flip angle and 3.4 ms TR was used to acquire volumes every 1.5 s for 7.5 minutes following injection of 0.1 mmol/kg Gd-DTPA-BMA. This was injected at 3 ml/s and after the dynamic run a further 10 volumes were acquired at 50°, 5° and 30°.

An arterial input function (AIF) was obtained from the external iliac arteries assuming a baseline blood T_1 of 1400 ms and a volume of muscle tissue was selected for further analysis. Model fitting was performed using a sequential quadratic programming algorithm (MATLAB). FXL, SXL and SS models in combination with a standard single-compartment tracer kinetics model [5] were each fitted to the raw 30° dynamic signal-time curves only using the measured AIFs and baseline T_1 estimates. This produced 3 estimates of K^{trans}(FXL), K^{trans}(SXL) and K^{trans}(SS); 3 estimates of v_e : v_e (FXL), v_e (SXL) and v_e (SS) and 1 estimate of the intracellular residence time of water, t_i : t_i (SS). Precision of these estimates was assessed using a bootstrap technique [6]. To address concerns raised following the above comparisons a full 2-pool (cell & interstitium) exchange model was fitted simultaneously to all the post-contrast data (30° dynamic and 50°, 5° and 30° data) to provide estimates of K^{trans}(full), v_e (full) and t_i (full).

<u>Results</u>. Baseline T₁ of muscle was estimated to be 1060 ± 30 ms. Both the FXL and SXL models produced acceptable fits to the data, mean estimates of K^{trans}(SXL) were 7% higher than K^{trans}(FXL) and mean estimates of v_e(SXL) were 9% higher than v_e(FXL). Fits obtained using the SS model resulted in slightly decreased χ^2 compared to the FXL and SXL model fits in 3 of 6 cases but these were not statistically significant. Fits to the 2-pool model compared well with those obtained using the SS model but the estimates of K^{trans}(full) and v_e(full) were closer to those obtained using the FXL and SXL models than those obtained using the SS model (Table 1). Estimates of t_i(full) ranged from 0.5 to 4.2 s, were generally imprecise, and differed from t_i(SS) estimates (that ranged from 0 to 1.6 s).

Discussion. The influence of cellular-interstitial water exchange on the measurement of [Gd] in muscle in our study was small. Despite the fact that FXL/SXL analyses represent the min./max. possible effects of cellular-interstitial water exchange and that estimates of K^{trans}(FXL) & K^{trans}(SXL) and v_e(FXL) & v_e(SXL) were precise, the error bars on these pairs of measurements typically overlapped. The SS model produced contradictory results. Estimates of both K^{trans}(SS) and v_e(SS) lay above the upper limit determined by the SXL results in half the cases. Furthermore, the error bars on the estimates of v_e(SS) and, in particular, t_i(SS) were often excessively large. Examination of the bootstrap fits revealed strong correlations between estimates of v_e(SS) and t_i(SS) estimate obtained in the remaining case was 0 s; in this limit SS = FXL. These results raise questions about the validity of the SS approach when applied to clinical DCE-MRI data; FXL and SXL models may be better choices for an assessment of tracer kinetics parameters. The full 2-pool model was able to estimate t_i(full) while maintaining estimates of K^{trans}(full) and v_e(full) within the bounds of the FXL and SXL models. However, the estimates of t_i(full) were imprecise and had a high inter-subject variability. Future studies will require more exchange sensitive data.

Using a conventional DCE-MRI acquisition, data were obtained from the internal obturator muscle in an exchange minimized manner. Analysis of such data using a SS approach should be approached with caution as estimates of K^{trans} and v_e may be biased, estimates of t_i may be inaccurate and many parameter estimates are likely to be imprecise. Though it was possible to estimate t_i using data with a range of flip angles and a 2-pool model, these estimates were very imprecise and suggest that DCE-MRI data of this type - used in isolation - are unsuitable for the assessment of water exchange.

Acknowledgments. References	1. Donahue et al. Magn Reson Med 1994;32:66-76.
These studies were funded by the Prostate	2. Landis et al. Magn Reson Med 2000;44:563-574.
Research Campaign UK and the National Cancer	3. Yankeelov et al. Magn Reson Med 2003;50:1151-1169.
Institute of Canada (Terry Fox Programme).	4. Kershaw et al. ISMRM 2007, Berlin. p 795.
	5. Tofts et al. J Magn Reson Imaging 1999;10:223-232.

6. Kershaw & Buckley. Magn Reson Med 2006;56:986-992.

Table 1.	Mean $(\pm SD)$ of parameter estimates obtained in
	6 subjects using 4 different exchange models.

			•
	K ^{trans} (×10 ⁻³ min ⁻¹)	v _e (no units)	t _i (s)
FXL	45 ± 25	0.13 ± 0.04	-
SXL	49 ± 27	0.14 ± 0.04	-
SS	67 ± 48	0.23 ± 0.14	0.69 ± 0.61
2-pool	47 ± 26	0.14 ± 0.04	2.6 ± 1.3

Fig. 1. Distribution of bootstrap estimates of $v_e(SS)$ and $t_i(SS)$. Note the poor precision in $t_i(SS)$ for all subjects and poor precision in $v_e(SS)$ for 3 (black symbols).