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Introduction: Rosette Trajectories [1-3] have been demonstrated in 1H and 31P spectroscopic imaging experiments and shown to achieve similar performance to the 
spirals. Their innate property of periodically sampling the center and edges of k-space and smoothly varying gradients makes for easy to design gradient waveforms.  
However, unlike spirals (or other non-Cartesian trajectories, e.g. PI), it is difficult to quantify analytically the number of excitations required based on the position of the 
sampled points, due to the way the k-space sampling density varies. We derive an analytical formula for the number of shots that provides for the highest sampling 
efficiency in a Rosette Spectroscopic Imaging (RSI) experiment.     

Theory: Rosette Trajectories (Fig 1) consist of a radial oscillation with frequency f1, which rotates at the same time with frequency f2 in kx-ky space, and are 

mathematically described by:             
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Here,
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k is the highest spatial frequency sampled and ,rG θ is the trajectory speed (gradient strength) in the radial 

direction and perpendicular on this direction. A number of shots shN uniformly distributed over 2π (angular 

separation 2 / shNπ ) is used to cover the kx-ky space. Based on the periodic sampling of k=0 (corresponding to the 

largest separation between samples along time axis), the RSI spectral bandwidth can be calculated (4). The multi-shot 
data acquired in between two successive k=0 crossings generate images corresponding to different echo times, from 
which the spectral information is recovered.  An appropriate number of shots needs to be chosen such all spatial 
frequencies are properly sampled in each temporal slice (defined by successive k=0 crossings). For the Rosette 
trajectories, while the sampling density decreases as they move away from the center of k-space (k=0) - as is the case 
for spirals or projection imaging (PI), when they get closer to k=kmax , the density slightly increases (Fig 2). Because 
the sampling rate and speed along each trajectory are already designed to ensure proper sampling [3], we estimate the 
largest separation in kx-ky space between two adjacent trajectories (C1 and C2) and constrain it to be equal to 1/fov. 

Methods: In the kx-ky space of a temporal slice, each center-out trajectory segment intersects the out-in segments a 

number of (integer part of) 2 1/(2 )cross shN N ω ω= ⋅ ⋅ times, for a total number of cross shN N⋅    crossings, arranged 

on crossN concentric circles (with shN crossing on each circle, separated by 2 / shNπ ) with:  
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We define d(C1,C2)=max(min(d1, d2, d3)), with d1 the distance between two adjacent crossings on the same circle, d2 
the distance between two crossings on consecutive circles and corresponding to adjacent trajectories and d3 the 
distance between crossings sitting on circles n,n+2 on the same radial axis (Fig 1). It can be shown that: 
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Directly comparing d1, d2 and d3, and setting d(C1,C2)=1/fov, yields:                      .                         
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Results: For Nx=64 and 2 1/ .97ω ω = , the sampling efficiency [4] was measured using Voronoi volumes 

for: a) The minimum number of excitations for which Nyquist is still obeyed (as measured directly using a 
simulation program) Nsh

min=56 and up to the b) Estimated number Nsh
est=103. The actual weights (Voronoi), 

agree with theoretical ones 1( ) ( ) ( ) ~ sin(2 )rw t G t dt G t dt tθ ω= ⋅ ⋅ ⋅ ⋅ ⋅ , only as Nsh approaches Nsh
est , 

whileη asymptotically increases to its theoretical value .90RSIη =  (Fig 3). 

Conclusions:  We derived an analytical expression for the number of Rosette trajectories to be used in an 
RSI experiment that achieves the highest sampling efficiency. While this number is a slight overestimate 
(typically 20%), it provides for a reliable way to obtain a quick estimate for Nsh. In addition to maintaining the 
highest sampling efficiency, this number of shots represents a two-fold or greater reduction (depending on the 

amount of trajectory twist) compared to the number obtainable with a PI-like derivation ( xNπ ).  
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Fig1: Rosette Trajectories in one temporal 

slice, shown in kx-ky space (
2 1/ 5.45ω ω = ) 

a)    b)  

Figure 2: a) kx-ky Rosette sampling density 
using Voronoi weights. b) Density Profile. 

Figure 3: Comparison of the theoretical pre-
compensation weights (blue) to k-t space 3D 
Voronoi volumes (red) and 2D Vor (green) 
measured in kx-ky space in each temporal slice for 
a) Minimum number of excitations -> .88η =  and b) 

Estimated number of excitations -> .90
RSI

η η= =  
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