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INTRODUCTION: Dynamic susceptibility contrast (DCE-MRI) is a widely used technique for studying hemodynamic changes in brain tissue. Hence, an important 
objective for the quantitative assessment of cerebral perfusion using DCE imaging is the estimation of a convolution integral, which can be achieved by the process of 
deconvolution. Various Methods, such as “Singular Value Decomposition” (1) have been developed for this purpose in the last decade. A serious drawback of these 
methods is a systematic overestimation of CBF and CBV in areas that contain many macro-vessels. To avoid this pitfall, multivariate statistical methods such as 
“Principle Component Analysis” (PCA) and “Independent Component Analysis” (ICA) have been applied as a pre-processing step to reduce the influence of macro-
vessel signal in parameter maps (2, 3). ICA has the potential to separate signal assigned to macro vessels from tissue signal. The clearly identified independent 
components, representing vessel signal, are removed from the data set. Inverting the ICA transformation with the remaining images restores a set of corrected PCs with 
a minimized influence of macro-vessel signal. In a second back transformation step, the PCA transformation is reversed to restore the corrected DCE-MRI data. 
However, the back transformation of a linear system in the presence of noise is inherently an ill-posed problem, and the direct matrix inversion may not yield useful 
results. Therefore “Tikhonov Regularisation” has been applied to both, PCA- and ICA-back-transformation step to reduce noise amplification and stabilize results. 
 
METHOD: In-vivo DCE-MRI data were obtained from routine examinations on a 3.0T MRI scanner (Siemens Tim Trio, Siemens Medical, Germany) with an 12 
channel head coil (Siemens Medical, Germany). A Single Shot EPI sequence was used with the following parameters: FOV/TR/TE/α=230mm/1250ms/28ms/60° with 
an image matrix of 128x128, slice thickness of 5.4mm and a temporal resolution of 1.19s for 19 slices and 60 time points. A dose of 0.1 mmol/kg contrast agent 
(MAGNEVIST®, Schering AG, Germany) was injected intravenously via a power injector (Spectris; Medrad Inc., Indianola, PA, USA) at a rate of 5 ml/s, followed by 
30 ml of NaCl 0.9% at the same speed. 

In a pre-processing step PCA was applied for whitening and for reducing the dimension of the ICA input data from 60 to 15. ICA was performed using a fast fixed 
point algorithm with a negentropy approximation for the cost function in the optimization problem (4). The inverse ICA transformation                         , where xPC are 
the principle components, xIC are the independent components and A is the mixing matrix, restores the set of principle components. The second back transformation, 
              where xDCE-MRI are the images of the restored dynamic time series and W is the whitening matrix inverts the PCA transformation step. The inverse 
solutions of both ill-posed linear equations were found by solving the following penalized least squares problem: 
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Choosing the matrix operator L = I, the identity matrix, yields the well known Tikhonov regularization (5). The regularization parameter α was estimated by the L-
curve method. Hemodynamic parameter maps rCBF, rCBV and rMTT were calculated from the original and ICA corrected concentration time series, using singular 
value decomposition (SVD). All post processing was performed offline on a 2 GHz dual core PC. Software for post processing was developed in house and programmed 
with Interactive Data Language (IDL 6.0, Research Systems Inc., USA) and Matlab (V 7.4,The MathWorks, Inc., MA, USA). 
 

RESULTS: Figure 1 shows the hemodynamic parameter maps rCBF (first row), rCBV (second row) 
and rMTT (third row) for uncorrected data (first column), ICA processed data (second column) and 
ICA processed data with regularized back transformation (third column). The window levels were set 
equally for related parameter images and no additional filter was applied. The amplified noise due to 
the solution of the ill-posed back transformation leads to higher noise level in macro-vessel corrected 
hemodynamic parameter maps (b,c,e). Regularization of the back transformation steps has an 
filtering effect on the reconstructed dynamic time series from which smoother parameter maps can 
be calculated (c,f,i). Regions of Interest (ROI) were obtained from not regularized and Tikhonov 
regularized reconstructed dynamic time series in veins, arteries, gray matter and white matter. The 
mean difference was lower than 1% for all regions.  
 
Conclusion: Minimizing macro-vessel signal using independent component analysis involves the 
solution of ill-posed linear systems. Direct back transformation leads to noise amplification in the 
reconstructed dynamic time series which results in noisy parameter maps. We found that Tikhonov 
regularization improves the visualization of hemodynamic parameter changes without affecting the 
quality of macro-vessel minimization through ICA. Contrary to a simple filter process regularization 
finds the optimum between underregularization, which is dominated by amplified noise and 
overregularization where data are oversmoothed. However, other regularizations and methods for 
evaluating the optimal regularization parameter are currently investigated for further improvement. 
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Figure 1: Hemodynamic parameter maps rCBF, rCBV 
and rMTT for unprocessed DCE-MRI data, ICA processed 
data and regularized ICA processed data. 
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