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Purpose: We present a fast and robust method for brain-tissue (white matter, gray matter, cerebrospinal fluid) segmentation in 
magnetic resonance (MR) images [1]. The method relies on a spatially-adaptive nonparametric Markov random field (MRF) image 
model. This general formulation enables the method to easily adapt to various kinds of MR images and the associated acquisition 
artifacts. It implicitly accounts for the intensity nonuniformity and performs reasonably well without any inhomogeneity correction. 
The method minimizes an information-theoretic metric on the probability density functions associated with image neighborhoods to 
produce an optimal segmentation. It automatically tunes its internal parameters based on the information content of the data. 
Experiments indicate that the performance of the method is very robust to small changes in the values of the internal parameters. 
Thus, the proposed method is easy to apply to a variety of clinical data and applications. The method incorporates a probabilistic atlas 
for initialization and as a prior during Bayesian segmentation; other priors are easily applicable. Our current implementation segments 
a 1x1x1 mm3 adult brain volume (about 2 million voxels inside the brain) in about 4 minutes on a standard 2.66 GHz Pentium-IV 
processor. This is an order-of-magnitude improvement over the implementation in [1].  Experiments on simulated (BrainWeb) and 
real (IBSR) data demonstrate the advantages of the method over the current state-of-the-art. 
Methods: The proposed method constructs a segmentation strategy based on a Markov statistical image model that it learns 
automatically from the input data. It formulates the segmentation problem as an optimization (maximization) of the mutual 
information between the segmentation labels and the Markov image statistics. Loosely speaking, the mutual information between two 
random variables quantifies the degree of functional dependence between them. For functionally dependent random variables, each 
variable uniquely determines the other, and the mutual information is maximized. On the other hand, independent random variables 
convey no information about each other, and their mutual information is zero (minimal). A “good” segmentation is one in which the 
voxel-neighborhood intensity values provide the most information about the class labels. Likewise, knowing the voxel class should 
provide a reliable estimate of the intensities in the voxel neighborhood. 
Formulation: Consider a discrete random variable L that maps each voxel v to the class to which it belongs, i.e. L(v)=k if voxel v is in 
class k. Let us define a mutually-exclusive and collectively-exhaustive decomposition of the image domain V into K segments, 
{v:L(v)=k}, with the Markov probability density functions (PDFs) P(Z|L(v)=k) modeling the intensities in neighborhoods. Assume 
that at each voxel t, an instance (l(v),z(v)) is drawn from the joint PDF P(Z,L). What we observe are, however, only the intensity 
vectors z(v). We define the optimal segmentation as the one that maximizes the mutual information between L and Z, i.e. I(L,Z). 
Algorithm Overview: (Step 1) Given a segmentation, we estimate the Markov probabilities associated with image neighborhoods 
using nonparametric Parzen-window density estimation. (Step 2) Using these Markov probabilities, we reassign voxel labels to 
increase the mutual information I(L,Z); each voxel is assigned the class k that maximizes the Markov probability. For most clinical 
studies, convergence occurs in one iteration. 
To compute the Markov probabilities, nonparametrically, we draw a random sample of image neighborhoods from the image. The 
random selection results in a stochastic approximation for the Markov PDFs that alleviates the effects of spurious local maxima 
introduced in the finite-sample-size Parzen-window density estimate. To account for spatially-varying brain structure and intensity 
inhomogeneity, we use a local sampling strategy where, for each voxel v, we draw a unique random sample from an isotropic 3D 
Gaussian PDF on the image-coordinate space, with mean at the voxel v. Experiments demonstrate that the method performs very 
robustly for a variety of choices of the sample size and Gaussian variance that produce more than several hundred voxels. We use a 
neighborhood comprising 7 voxels corresponding to two voxel neighbors in each of the three cardinal directions. 
Results and Validation: Our current implementation employs an 
intelligent approximation of the algorithm described above that 
provides an order-of-magnitude speedup over a naïve implementation, 
while retaining the same level of performance. The algorithm scales 
linearly with the number of processors/cores on a shared-memory 
machine. Our implementation relies on the Insight Toolkit 
(www.itk.org). We show results on the IBSR data 
(www.cma.mgh.harvard.edu/ibsr) comprising 
clinical MR images (including pathological cases 
and severe imaging artifacts) with manual 
segmentations. In the images on the right, we see 
an axial slice of the data followed by the 
automatic and manual segmentations. The graphs 
show the Dice overlaps for the segmentations 
with different strengths of the atlas prior (average Dice overlap: white matter 0.88; gray matter is 0.80). 
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