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INTRODUCTION 
Magnetic susceptibility has important effects in MRI, generating both contrast and artifacts.  A technique to quantitatively estimate magnetic susceptibility 

distributions could potentially enable novel imaging applications, such as accurate quantification of cells labeled with superparamagnetic iron oxide particles.  
However, recovering the susceptibility distribution from standard MR images is an ill-conditioned deconvolution problem and is difficult to solve in general.  In this 
work, we present an approach for generating susceptibility images from field maps in MRI using non-linear regularization techniques. 
METHODS 

In image space, the effect of a magnetic susceptibility distribution can be described through convolution of the distribution with a dipole response, which in 
k-space becomes point-wise multiplication with the kernel (1/3 – kz

2/K2), where K is the k-space radius.  Estimation of the susceptibilities of specific regions using the 
singular value decomposition of the image space convolution has been previously proposed [1], but the SVD technique is too computationally expensive for 
susceptibility estimation of every voxel in an image.  Given the relative field map ψ in parts per million, the volume susceptibility distribution χ for every voxel in the 
image can in theory be estimated as χ = FT-1[(1/3 – kz

2/K2)-1FT(ψ)] [2].  However, straightforward inversion in this manner is ill-conditioned because of the zeros in the 
k-space kernel (points where kz

2/K2 = 1/3).  One approach to ill-conditioned problems is Tikhonov regularization, where the least squares problem minχ||Cχ-ψ||2 is 
modified to minχ||Cχ-ψ||2+α2||Rχ||2, where C is the matrix representation of the image space convolution, α is a tunable regularization parameter, and R is a 
regularization matrix.  In standard Tikhonov regularization, R is the identity matrix, though other choices such as an approximation to the image space gradient are 
possible.  Tikhonov regularization has been previously applied to inversion of susceptibility distributions and preliminary results, while encouraging, suffer from 
artifacts and underestimated regression slopes in quantifying susceptibilities [3].   

Here we propose the use of non-linear regularization techniques, where the least squares problem is modified to minχ||Cχ-ψ||2+βf(χ) where f(χ) can be the l1 norm 
of χ or the three dimensional total variation of χ, given by TV(χ) = Σ(x,y,z)√[(χ(x,y,z)-χ(x-1,y,z))

2+(χ(x,y,z)-χ(x,y-1,z))
2+(χ(x,y,z)-χ(x,y,z-1))

2].  The l1 norm promotes sparsity in the 
estimated distribution while the total variation promotes sparsity of edges (i.e. favors regions of uniform susceptibility) in image space [4].   

To validate the regularization techniques, two phantom studies were performed.  In the first, 7 thin walled plastic tubes were attached vertically in a Petri dish.  
The dish and tubes were filled with water and imaged to provide a background reference phase map.  The water in the tubes was replaced with Gd-DTPA (326 ppm/M 
at room temperature [5]) of varying concentrations (Fig. 1), and the dish was imaged again to provide the 
susceptibility distribution of interest.  In the second experiment, a small plastic container was filled with 2% agar 
containing small pieces of agar gel with 100:1 Feridex.  An identical container containing only 2% agar provided a 
reference phase map.  Imaging was performed using a 1.5T GE Signa scanner and a 3D gradient echo sequence.  
For the 7 tube phantom, pulse sequence parameters were TR 50 ms, TE1 1.6 ms, TE spacing 0.5 ms, 10 TEs, RBW 
62.5 kHz, flip angle 30, matrix size 128x128x16, resolution 0.75x0.75x1mm.  For the Feridex phantom, pulse 
sequence parameters were TR 50 ms, TE1 2.6 ms, TE spacing 1 ms, 10 TEs, RBW 31.25 kHz, flip angle 30, matrix 
size 128x128x32, resolution 0.5x0.5x0.5 mm.  Inversions were compared using l2, l2 of the gradient, l1, and total 
variation regularizations.  Tikhonov regularized inversions used the conjugate gradients method, and inversions 
with non-linear regularization used a non-linear conjugate gradients algorithm [6]. 
RESULTS 

Plots of the estimated susceptibilities vs. the true susceptibilities for the Gd phantom (Fig. 1) indicate a linear 
relationship between true susceptibility and the susceptibility measured by all four techniques. Parameters for the fit 
lines are listed in Table 1.  Figure 2 shows images reconstructed using each inversion technique.  The non-linear 
regularization techniques provide sharper depiction of the regions with high susceptibility.   

 Estimated susceptibility distributions for the agar gel containing Feridex are shown in Fig. 3.  All inversion 
schemes provide good depiction of the susceptibility map, though the non-linear techniques provide slightly sharper 
delineation of boundaries and the l1 inversion has the least visible streaking artifacts. 
DISCUSSION 

In this work, we have compared four regularization techniques to invert arbitrary magnetic susceptibility 
distributions from magnetic field maps.  The estimated susceptibilities have a linear relationship with respect 
to the true susceptibilities.  However, the slopes slightly differ from unity.  Some variation in slope is expected 
as a result of regularization type and parameter, although this could be calibrated and corrected for.  
Interestingly, a small overall offset was observed, which may result from the fact that a solution with any 
offset provides the same shifts, so that susceptibilities relative to the 
surrounding medium can be quantitatively assessed. 

The susceptibility quantification techniques presented are targeted 
primarily towards estimation of sparse distributions or edges.  These 
techniques may therefore allow accurate tracking of labeled cells, or 
homogeneous organs with well defined boundaries.  
CONCLUSION 

The regularization techniques examined have different characteristic 
effects on the generated images.  In these datasets, the l1 regularization 
produced susceptibility maps with the least streaking artifacts in the 
background.  The l2 of the gradient regularization generated images with 
the least variance over the regions containing the susceptibilities of 
interest.  Total variation regularization yielded the most accurate 
estimation of susceptibilities, having the regression slope closest to unity.   
REFERENCES   

[1] Li, et. al. MRM, 51:1077-1082, 2004. [2] Haacke, et. al. MRI, 
23:1-25, 2005.  [3] Morgan, et. al. ISMRM, 15:35, 2007. [4] Candes, et. 
al. Comm. Pure Appl. Math., LIX:1207-1223, 2006. [5] CRC Handbook 
of Chemistry and Physics, CRC Press, 2007.  [6] Fletcher, et. al., Comput. 
J., 7:149-154, 1964.   

Figure 1.  Plots of estimated susceptibility 
vs. true susceptibility for all regularization 
techniques. 

 slope y-intercept r2 
l1 1.28 -1.56 0.993 
Total Variation 1.02 0.47 0.988 
l2 0.78 0.23 0.992 

l2 of Gradient 0.88 0.34 0.996 

Table 1.  Parameters for the lines fit in Fig. 1. 

l1 l2 TV l2-grad 

Figure 2.  a)  T1 weighted image of the Gd phantom.  Gd concentrations are listed in mM.  
Susceptibility distributions estimated using (b) l1, (c) total variation, (d) l2, and (e) l2 of 
the gradient regularization. 

Figure 3.  a) T2 weighted image of the Feridex phantom.  Susceptibility distributions 
estimated using (b) l1, (c) total variation, (d) l2, and (e) l2 of the gradient regularization. 
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