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Introduction:  Multi-coil imaging is one of the success stories of clinical MRI. Better image quality and/or shorter scan times have been demonstrated by various 
algorithms, SENSE[1] and GRAPPA[2] being the more popular ones. Non-Cartesian acquisitions, which generally have superior performance in the presence of flow 
and motion, present challenges to these techniques. One area where the robustness of non-Cartesian acquisitions can dramatically contribute is dynamic imaging since 
the object of interest(i.e, the heart) is likely to have complex temporal dynamics. However, dealing with a time series of images(instead of a single image) tremendously 
increases the difficulty of the already challenging problem. In this work, we present an algorithm that achieves very fast reconstruction rates on non-Cartesian multi-coil 
dynamic MRI. The algorithm is statistical in nature and uses both the spatial constraints(coil information) and temporal constraints(temporal behavior of image pixels) 
in the reconstruction. Such constraints have recently received attention in time-resolved applications.(See, for instance, kt-BLAST[3] and HYPER[4].) Consecutive 
frames from an in-vivo cardiac experiment with a 5-interleaf spiral readout trajectory are presented, demonstrating the merit of the algorithm with a 5x increase in the 
frame rate. 
Theory: We use the dynamic system given in Fig. 1 to model the temporal variation of the image series. Here, Sn represents the true and noise-free image at time n, and 
Gn, F and Γ denote the time-dependent gridding operator, the Fourier transform operator and deapodization operator, respectively. Ck denotes the sensitivity matrix of 
the kth coil, Ic is the c x c identity matrix, and ⊗ denotes the Kronecker product. Un represents the change in the image from time n-1 to n, and Wn is the observation 
noise with a covariance of Σ=σ2I. Both Un and Wn are modeled as zero-mean random processes. Xn denotes the raw data obtained by one spiral interleaf at time n. 

This formulation is in the standard linear dynamical system form, and hence we can directly apply the 
Kalman filter, a celebrated statistical signal processing algorithm[5]. By using the raw data of each single 
interleaf, which by itself corresponds to a severely aliased image, we expect the Kalman filter to provide an 
alias-free image for each interleaf. However, as suggested in [6], we will exclude the very center of the k-space, 
which is fully sampled at each interleaf, and reconstruct that part by gridding. This approach allows for 
approximations resulting in huge computational savings on the Kalman filtering equations because the 
problematic covariance matrices become approximately diagonal. Moreover, time consuming parts of the 
Kalman filter are rearranged so that they become scan-independent, yielding further computational savings. 
Lastly, fully sampling the very center(~1% of the total k-space) provides auto-calibration ability, as frequently used in the 
MRI literature. 

One interesting property of the presented dynamical system model is the simplicity of the first equation. It suggests that 
our ability in estimating the first and second moments of the process Un determines the quality of the reconstruction. Perhaps 
more importantly, we do not make any assumptions on the motion of the object of interest. Therefore, the algorithm is well 
suited for imaging pathological cases such as arhythmia, and it should robustly work on any in-vivo object of interest. The 
diagonal entries of the covariance estimate of Un obtained from a typical scan is shown in Fig. 2 in image format. 
Methods: The RTHawk real-time system[7] is used with a fat-suppressed GRE pulse sequence, a 5-interleaf spiral readout 
and an 8-channel cardiac coil. Display FOV is 26 cm with a resolution of 2 mm. No ECG-gating or breath-holding was used. 
A small region around the center of the k-space is fully sampled by each interleaf, and the sampling density decreases slightly 
and linearly in the outer part for an SNR-efficient data acquisition. The statistical estimates required to initialize the Kalman 
filter are obtained from approximately ten-second-long scans. Alternatively, they may be obtained from the data itself, doing 
away with the extra initialization scan. The noise variance estimate(σ2) is used as a parameter to trade image denoising for 
faster tracking. 
Results: Fig. 3 shows 4 consecutive frames obtained from a healthy volunteer. The imaging slices were chosen to 
include valve leaflets. These frames capture the valve as it opens up and and the time between consecutive frames is 
20.4 ms, corresponding to 49 frames per second. We note that the rapid motion of the valve is displayed with great 
detail. The valve moves a small amount between consecutive frames and it is crisply displayed in all of the frames. 
Reconstruction is very fast, the major components being 2 gridding and 2 Fourier operations per image. 
 

Conclusions: The reason parallel imaging works is that the coil sensitivity information imposes constraints on the reconstruction and effectively unaliases 
undersampled data. Temporal dynamics of pixels play a similar role in dynamic imaging. While these ideas have been around, combining them with non-Cartesian 
sampling strategies has been a challenge. We presented a statistical algorithm based on the Kalman filter that provides rapid reconstructions and tested it by imaging the 
fast moving cardiac valves. Initial results show very high temporal resolution, benefiting from the advantages of spiral trajectories.  
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Figure 2 – Covariance estimate for Un: 
Bright pixels indicate rapid temporal 
dynamics whereas dark pixels correspond 
to pixels that are relatively stable over 
time. Note that the contribution of very low 
harmonics is excluded in this motion map. 

Figure 3 – 4 consecutive frames obtained using an 8-channel cardiac coil and a spiral readout trajectory. The reconstruction runs at 49 frames per second. 

Figure 1 – The dynamical system model 
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