

Interventional MRI with sparse sampling: an application of compressed sensing

D. Hernando¹, J. Haldar¹, L. Ying², K. King³, D. Xu³, and Z-P. Liang¹

¹Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, ²Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States, ³G.E. Medical Systems, Milwaukee, WI, United States

INTRODUCTION

In interventional MRI (I-MRI), a sequence of MR images is reconstructed in order to guide a diagnostic or therapeutic procedure where an invasive device is inserted in the body. The need for near-real-time image updates places two distinct constraints on I-MRI reconstruction: 1) high frame rate (several frames per second, depending on the application [2,3]); 2) *causal* reconstruction of the image sequence (as opposed to other dynamic MRI applications, where the complete image sequence can be recovered after all the data are collected [1]). Several methods have been proposed, which take advantage of the temporal correlations in I-MRI to reduce k -space coverage, thus allowing a higher frame rate [4]. We present a compressed sensing (CS) method, which exploits the redundancy present in many I-MRI acquisitions for reduced-encoding image reconstruction.

METHODS

The CS theory states that a signal \mathbf{x} of length N can be recovered stably from a set of M linear measurements $\mathbf{d} = \Phi \mathbf{x}$ (with $M < N$) as long as \mathbf{x} is sufficiently sparse in a known representation and Φ satisfies a certain “restricted isometry” property with respect to that representation [5]. Recovery is performed effectively via l_1 -norm minimization [1]. Denoting $\mathbf{d}_n = \Phi_n \mathbf{x}_n$ as the measurements acquired for the n th frame (e.g., a reduced set of phase-encoding lines), we propose to estimate a good (sparse) representation for \mathbf{x}_n based on $\{\mathbf{d}_1, \dots, \mathbf{d}_n\}$. Specifically, assuming \mathbf{x}_1 is a reference image acquired with full resolution (e.g., before the intervention), we can model subsequent images as $\mathbf{x}_n = \mathbf{T}_n \mathbf{x}_1 + \mathbf{y}_n$, where \mathbf{T}_n is a transformation (rotation, translation) designed to account for, e.g., respiratory motion, and \mathbf{y}_n is a sparse image which captures the motion of the interventional device and the errors in the modeling by \mathbf{T}_n . By acquiring the center of k -space at every frame, and assuming most of the signal energy is due to anatomical features, we can accurately estimate the current shift and rotation matrix \mathbf{T}_n by estimating the k -space rotation and phase shift between \mathbf{d}_1 and \mathbf{d}_n . Then, \mathbf{y}_n will be a sparse vector which can be effectively recovered by solving the convex optimization problem

$$\min \|\mathbf{y}_n\|_1 + \alpha \|\mathbf{D}(\mathbf{T}_n \mathbf{x}_1 + \mathbf{y}_n)\|_1 \text{ such that } \|\Phi_n(\mathbf{T}_n \mathbf{x}_1 + \mathbf{y}_n) - \mathbf{d}_n\|_2 \leq \varepsilon \quad (1)$$

where \mathbf{D} takes finite differences in the spatial domain, the term $\alpha \|\mathbf{D}(\mathbf{T}_n \mathbf{x}_1 + \mathbf{y}_n)\|_1$ is included to reduce noise in the reconstruction, and ε is often set according to the noise level [6]. Note that for $\alpha=0$, from a Bayesian interpretation of (1), $\mathbf{T}_n \mathbf{x}_1$ provides the mean for the prior distribution of \mathbf{x}_n .

RESULTS

Reduced-encoding acquisition with varying sampling patterns was simulated from a set of fully sampled I-MRI data. Bulk motion was estimated with good accuracy from the center of k -space (e.g., 15x15 k -space samples). We compared several randomized sampling patterns (previously studied in the CS literature [5,6,7]), as well as low-frequency phase-encoding lines. Figure 1 shows an example of CS-based reconstruction and frame-by-frame errors for different reconstruction methods. Table 1 shows mean errors for different sampling strategies and reconstruction methods.

	Zero-Padding	Keyhole	CS
32 RP	X	X	0.150
PE: 16 LF + 16 HF	0.130	0.094	0.086
PE: 24 LF	0.109	0.101	0.090
PE: 32 LF	0.085	0.088	0.080

Table 1. Mean relative errors for different sampling strategies and reconstruction methods. “PE” refers to phase encodes, “LF” are acquired at low-frequencies whereas “HF” are chosen uniformly at random; “RP” substitutes the phase encoding step for an inner product with a random i.i.d. Gaussian vector (frequency encodes are always assumed). Note that, despite the good properties of randomized sampling for CS [6], in this case the improved SNR obtained by sampling the center of k -space outweighs the CS-related benefits of random sampling. One aspect not included in this analysis is computational complexity: although CS reconstruction is computationally more demanding than other methods, efficient solution of (1) is an active area of research showing promising results [6].

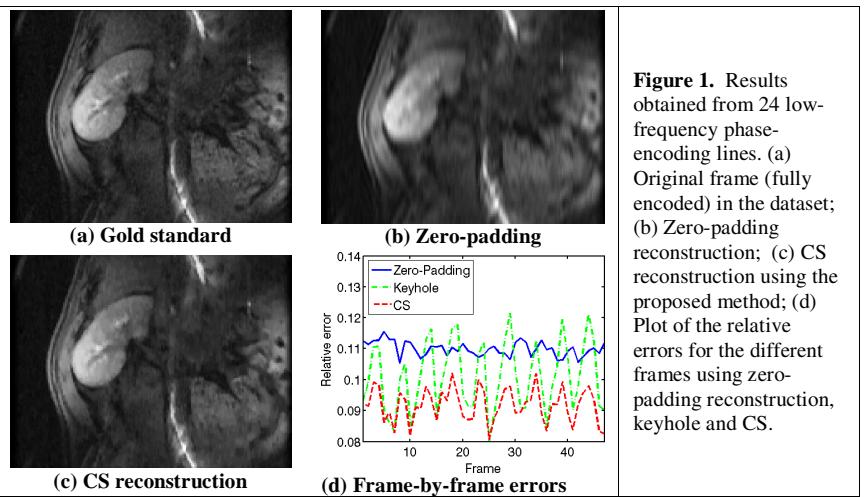


Figure 1. Results obtained from 24 low-frequency phase-encoding lines. (a) Original frame (fully encoded) in the dataset; (b) Zero-padding reconstruction; (c) CS reconstruction using the proposed method; (d) Plot of the relative errors for the different frames using zero-padding reconstruction, keyhole and CS.

CONCLUSION

CS provides a promising method for I-MRI reconstruction. In this work, we have tailored the CS reconstruction to take advantage of the sparsity present in I-MRI. Preliminary results compare favorably with alternative reconstruction methods.

REFERENCES

- [1] M. Lustig et al., ISMRM 2006, p. 2420.
- [2] K. Shimizu et al., JMRI 8:262-264, 1998.
- [3] S. Muller et al., MRM 56:1156-1162, 2006.
- [4] A. Shankaranarayanan et al., JMRI 13:142-151, 2001.
- [5] E. Candes, Int. Congress of Mathematics, 3:1433-1452, 2006.
- [6] M. Lustig et al., MRM, *in press*.
- [7] J. Haldar et al., ISMRM 2007, p. 829.