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INTRODUCTION

In interventional MRI (I-MRI), a sequence of MR images is reconstructed in order to guide a diagnostic or therapeutic procedure where an invasive
device is inserted in the body. The need for near-real-time image updates places two distinct constraints on I-MRI reconstruction: 1) high frame rate
(several frames per second, depending on the application [2,3]); 2) causal reconstruction of the image sequence (as opposed to other dynamic MRI
applications, where the complete image sequence can be recovered after all the data are collected [1]). Several methods have been proposed, which
take advantage of the temporal correlations in I-MRI to reduce k-space coverage, thus allowing a higher frame rate [4]. We present a compressed
sensing (CS) method, which exploits the redundancy present in many I-MRI acquisitions for reduced-encoding image reconstruction.

METHODS

The CS theory states that a signal X of length N can be recovered stably from a set of M linear measurements d=@x (with M<N) as long as X is
sufficiently sparse in a known representation and @ satisfies a certain “restricted isometry” property with respect to that representation [5]. Recovery
is performed effectively via |;-norm minimization [1]. Denoting d,=@,X, as the measurements acquired for the nth frame (e.g., a reduced set of
phase-encoding lines), we propose to estimate a good (sparse) representation for X, based on {di,...,dy}. Specifically, assuming X; is a reference
image acquired with full resolution (e.g., before the intervention), we can model subsequent images as Xp=1 X;+Y,,where T, is a transformation
(rotation, translation) designed to account for, e.g., respiratory motion, and Y, is a sparse image which captures the motion of the interventional
device and the errors in the modeling by T,. By acquiring the center of k-space at every frame, and assuming most of the signal energy is due to
anatomical features, we can accurately estimate the current shift and rotation matrix T, by estimating the k-space rotation and phase shift between d;
and dy. Then, y, will be a sparse vector which can be effectively recovered by solving the convex optimization problem

min || Yn [[1+@||D (ToXa+ Yo)ll1 suchthat [|@n (ToXe+ Yn) —dn [[2< & @)

where D takes finite differences in the spatial domain, the term «||D (TX1+ Yn)||1 is included to reduce noise in the reconstruction, and ¢ is often set
according to the noise level [6]. Note that for =0, from a Bayesian interpretation of (1), T,X; provides the mean for the prior distribution of X.

RESULTS

Reduced-encoding acquisition with varying sampling patterns was simulated from a set of fully sampled I-MRI data. Bulk motion was estimated
with good accuracy from the center of k-space (e.g., 15x15 k-space samples). We compared several randomized sampling patterns (previously studied
in the CS literature [5,6,7]), as well as low-frequency phase-encoding lines. Figure 1 shows an example of CS-based reconstruction and frame-by-
frame errors for different reconstruction methods. Table 1 shows mean errors for different sampling strategies and reconstruction methods.
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32 RP X X 0.150 Figure 1. Results
PE: 16 LF + 16 HF 0.130 0.094 0.086 obtained from 24 low-
PE: 24 LF 0.109 0.101 0.090 frequency phase-
PE: 32 LF 0.085 0.088 0.080 encoding lines. (a)

Table 1. Mean relative errors for different sampling strategies
and reconstruction methods. “PE” refers to phase encodes,
“LF” are acquired at low-frequencies whereas “HF” are chosen
uniformly at random; “RP” substitutes the phase encoding step
for an inner product with a random i.i.d. Gaussian vector
(frequency encodes are always assumed). Note that, despite the
good properties of randomized sampling for CS [6], in this case
the improved SNR obtained by sampling the center of k-space
outweighs the CS-related benefits of random sampling. One
aspect not included in this analysis is computational
complexity: although CS reconstruction is computationally
more demanding than other methods, efficient solution of (1) is
an active area of research showing promising results [6].
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padding reconstruction,
keyhole and CS.

CONCLUSION

CS provides a promising method for I-MRI reconstruction. In this work, we have tailored the CS reconstruction to take advantage of the sparsity
present in I-MRI. Preliminary results compare favorably with alternative reconstruction methods.
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