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INTRODUCTION 
In interventional MRI (I-MRI), a sequence of MR images is reconstructed in order to guide a diagnostic or therapeutic procedure where an invasive 
device is inserted in the body. The need for near-real-time image updates places two distinct constraints on I-MRI reconstruction: 1) high frame rate 
(several frames per second, depending on the application [2,3]); 2) causal reconstruction of the image sequence (as opposed to other dynamic MRI 
applications, where the  complete image sequence can be recovered after all the data are collected [1]). Several methods have been proposed, which 
take advantage of the temporal correlations in I-MRI to reduce k-space coverage, thus allowing a higher frame rate [4]. We present a compressed 
sensing (CS) method, which exploits the redundancy present in many I-MRI acquisitions for reduced-encoding image reconstruction.  
 
METHODS 

The CS theory states that a signal x of length N can be recovered stably from a set of M linear measurements d=Φx (with M<N) as long as x is 
sufficiently sparse in a known representation and Φ satisfies a certain “restricted isometry” property with respect to that representation [5].  Recovery 
is performed effectively via l1-norm minimization [1]. Denoting dn=Φnxn as the measurements acquired for the nth frame (e.g., a reduced set of 
phase-encoding lines), we propose to estimate a good (sparse) representation for xn based on {d1,…,dn}. Specifically, assuming x1 is a reference 
image acquired with full resolution (e.g., before the intervention), we can model subsequent images as xn=Tnx1+yn,where Tn is a transformation 
(rotation, translation) designed to account for, e.g., respiratory motion, and yn is a sparse image which captures the motion of the interventional 
device and the errors in the modeling by Tn. By acquiring the center of k-space at every frame, and assuming most of the signal energy is due to 
anatomical features, we can accurately estimate the current shift and rotation matrix Tn by estimating the k-space rotation and phase shift between d1 

and dn. Then, yn will be a sparse vector which can be effectively recovered by solving the convex optimization problem  

min || yn ||1+α||D (Tnx1+ yn)||1  such that   ||Φn (Tnx1+ yn) – dn ||2< ε                (1) 

where D takes finite differences in the spatial domain, the term α||D (Tnx1+ yn)||1 is included to reduce noise in the reconstruction, and ε is often set 
according to the noise level [6]. Note that for α=0, from a Bayesian interpretation of (1), Tnx1 provides the mean for the prior distribution of xn. 
 
RESULTS 
Reduced-encoding acquisition with varying sampling patterns was simulated from a set of fully sampled I-MRI data.  Bulk motion was estimated 
with good accuracy from the center of k-space (e.g., 15x15 k-space samples). We compared several randomized sampling patterns (previously studied 
in the CS literature [5,6,7]), as well as low-frequency phase-encoding lines. Figure 1 shows an example of CS-based reconstruction and frame-by-
frame errors for different reconstruction methods. Table 1 shows mean errors for different sampling strategies and reconstruction methods.  
 

 Zero-Padding Keyhole CS 

32 RP X X 0.150 
PE: 16 LF + 16  HF 0.130 0.094 0.086 
PE: 24 LF  0.109 0.101 0.090 
PE: 32 LF 0.085 0.088 0.080 

Table 1. Mean relative errors for different sampling strategies 
and reconstruction methods. “PE” refers to phase encodes, 
“LF” are acquired at low-frequencies whereas “HF” are chosen 
uniformly at random; “RP” substitutes the phase encoding step 
for an inner product with a random i.i.d. Gaussian vector 
(frequency encodes are always assumed). Note that, despite the 
good properties of randomized sampling for CS [6], in this case 
the improved SNR obtained by sampling the center of k-space 
outweighs the CS-related benefits of random sampling. One 
aspect not included in this analysis is computational 
complexity: although CS reconstruction is computationally 
more demanding than other methods, efficient solution of (1) is 
an active area of research showing promising results [6]. 
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Figure 1.  Results 
obtained from 24 low-
frequency phase-
encoding lines. (a) 
Original frame (fully 
encoded) in the dataset; 
(b) Zero-padding 
reconstruction;  (c) CS 
reconstruction using the 
proposed method; (d) 
Plot of the relative 
errors for the different 
frames using zero-
padding reconstruction, 
keyhole and CS.  

 
(c) CS reconstruction 

 
(d) Frame-by-frame errors 

CONCLUSION 
CS provides a promising method for I-MRI reconstruction. In this work, we have tailored the CS reconstruction to take advantage of the sparsity 
present in I-MRI. Preliminary results compare favorably with alternative reconstruction methods.  
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