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Introduction Applying compressed sensing (CS) [1,2] in MRI has recently attracted much attention, and initial investigation has 
shown that MR images can be reconstructed from a small subset of the k-space data in the single receiver coil case [3]. The use of 
multiple receiver coils is now standard in many imaging protocols. We consider the use of CS in recovering MR images from multi-
coil datasets and compare the results to those of using a standard direct recovery method (SENSE).  
Theory CS theory asserts that, with high probability, the sparse representation of a signal can be recovered from a linear measurement 
set that is much smaller than that normally needed to define the signal in full. K-space data acquired from different receiver coils are 
distinct linear combinations of the underlying image due to the distinct coil sensitivity distributions.  Thus incorporating measurements 
from multiple receiver coils allows a higher acceleration factor to be achieved. Image reconstruction can be performed via solving the 
following convex optimization (adopting the same norm notation as in [1]): 
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where iy ,  ic , x  and h are the stacked column vectors of the partial k-space data acquired from the ith coil, the coil sensitivity of the 

ith coil, the image to be recovered, and the k-space sampling mask used, respectively. We treat the measurement matrix Φ  as a 
collection of coil sensitivity weighted Fourier matrices (W is the full Fourier encoding matrix) and Ψ is a suitable sparsifying 
transform. λ  is a small constant that controls the data fidelity. Knowledge of the object support region can also be incorporated by 
masking x  with a binary support mask.  
Method A T1-weighted 3D brain scan was performed using the SPGR sequence on a GE 1.5T scanner equipped with an 8-channel 
head coil (128×256×128, TR/TE = 23/10ms, flip angle = 15º). Axial plane (in which under-sampling in both directions is feasible) 
reconstructions at an acceleration factor of 8 were performed using both CS and 2D SENSE. The sparsifying transform used was the 
Debauchies-4 wavelet and non-linear conjugate gradient was used to solve (1) [3].  
Results Comparing the reconstruction results of using 2D SENSE and compressed sensing (Figure 1), it is seen that the former is 
corrupted by a high level of noise, whereas the CS reconstruction obviously suffers less from reconstruction noise while being subject 
to blurring and slight loss of image contrast. Our reconstruction results also showed that applying CS in 2D pMRI also achieves better 
results than the conventional SENSE approach at high acceleration factors.  
Discussion CS reconstruction of MR images using data from multiple receiver coils is limited by two factors: firstly, MR images in 
practice do not have coefficients which are exactly zeros in the wavelet domain, violating the ideal CS assumption; secondly, the 
matrix Φ  in Eq.(1) is not as mutually incoherent with Ψ  as a Fourier matrix [2], and thus data acquired from multiple coils cannot 
fully compensate for the k-space under-sampling.  
Although Φ is of large scale in practice, it (as well as its transpose) can be efficiently implemented using the FFT. The results 
(128×128) presented took only 100 iterations (about 1 minute) using a Matlab implementation.  
Conclusion Initial investigation of applying compressed sensing in parallel MR imaging has led to some promising results and led to 
better results than the conventional direct recovery at high acceleration factors.  
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                                                                                       (b) 2D SENSE (c) CS reconstruction.   
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