Self-Navigated Motion Compensation in Simultaneous ¹⁹F/¹H 3D Radial Imaging using Golden Means Profile Interleaving

J. Rahmer¹, J. Keupp¹, and S. D. Caruthers^{2,3}

¹Philips Research Europe, Hamburg, Germany, ²Washington University, St. Louis, MO, United States, ³Philips Medical Systems, Andover, MA, United States

Introduction

MR detection of low concentrations of imaging agents labeled with ¹⁹F often requires long signal averaging times and therefore motion compensation is desirable. Simultaneous acquisition of ¹H and ¹⁹F signal allows self-navigated motion tracking using the stronger ¹H signal [1]. In this work, 3D isotropic radial imaging has been combined with a profile acquisition order based on the 2D golden means [2,3]. Thereby, the intrinsic robustness of radial sequences

against motion and undersampling can be combined with a flexible, motion-adaptive temporal frame rate. The technique is demonstrated in ¹⁹F/¹H in-vivo scans with 1D translational motion and phantom scans with 3D rigid-body motion.

Methods

A 3D radial echo sequence is applied [4]. Profile increments were derived from the 2D golden mean factors $\alpha = 0.4656$ and $\beta = 0.6823$ [5] to calculate increments $\Delta kz = 2\alpha$ and $\Delta \phi = 2\pi\beta$ (Fig. 1). With this technique, a highly isotropic distribution of radial profiles in 3D k space is achieved over the total duration of a scan as well as over an arbitrary time window extracted for dynamic imaging. MR scans were performed on a modified clinical 3.0 T whole body scanner (Achieva

Results and Discussion

Figure 2: In-vivo motion tracking on 3D ¹*H* data and correction of simultaneously acquired ¹⁹F data. Data without 1D shift motion (c,g,j) and with motion (d,h,k). Dividing data (d) into 128 frames of duration 3.7 s allows extraction of translational motion (upper graph). (e,i,l) Motion-corrected ${}^{1}H$ signal, ${}^{19}F$ signal, and overlay. (a) Single ${}^{1}H$ frame used for registration. Dividing data (d) into 1024 frames increases temporal resolution to 0.46 s (lower graph). (b) Single frame. (f) Motion corrected image from 1024 frames.

Conclusion

3D isotropic undersampled radial imaging using golden means interleaving of profiles allows flexible true 3D motion compensation by self-navigation. Frame rates on the order of 0.2-2 Hz are feasible at reasonable resolution. Application to simultaneous ¹⁹F/¹H imaging has been shown, but the achieved frame rates make the approach useful for compensation of breathing motion in abdominal or cardiac imaging as well. In the future, frame rates can possibly be increased by combination with sliding window and more intelligent reconstruction techniques. References

the ¹H channel.

[1] Keupp J, Proc. ISMRM. 2007;15:874. [2] Winkelmann S et al., IEEE Trans Med Imaging. 2007;26:68-76. [3] Chan RW et al. ISMRM Workshop Non Cart Imaging 2007. [4] Barger AV et al., Magn. Reson. Med. 2002;48:297-305. [5] Anderson PD, J of Electronic Imaging. 1993:147-54. [6] P. Thévenaz et al., IEEE Trans Image Proc. 1998;7:27-41.

Figure 3: Motion tracking on 3D ¹H data and correction of ¹⁹F signal. Data without motion (a,e) and with 3D rigid body motion (b,f). Dividing data (a) into 70 frames of duration 1.0 s allows extraction of translational and rotational motion (graphs). (c) Motion corrected ¹H image. (g) Corrected ¹⁹F image using ¹H motion information. (d) Single ¹H frame. (h) Single ¹⁹F frame.

Figure 1: Golden section increments Δkz and $\Delta \varphi$ between subsequent radial readouts.

3.0T, Philips Medical Systems) using a dual-tuned ¹⁹F/¹H T/R solenoid coil (\emptyset 7 cm) [1]. For simultaneous ¹⁹F/¹H imaging, perfluoro-crown-ether nanoparticles were used as ¹⁹F agents. To demonstrate dynamic imaging capabilities in in-vivo experiments, a few µl of nanoparticle emulsion were injected into sedated mice which were scanned with and without external 1D motion according to an institutionally approved animal protocol. Scan parameters were: FOV = 128 mm, isotropic matrix size 64^3 , 131064 radial profiles, TE = 1.17 ms, repetition

extracted motion information was used to correct the ¹⁹F as well as the ¹H images.

time TR = 3.6 ms, flip angle 8° , and total scan duration 7 min 52 s. The long acquisition time allowed detection of the ¹⁹F-labeled tracers. For phantom experiments, 3D motion was performed by a volunteer's hand holding two vials, one filled with ¹H phantom fluid and one with ¹⁹F nanoparticle emulsion. Scan parameters were: FOV = 80 mm, isotropic 80³ matrix, 12800 profiles, TE/TR = 1.84/5.5 ms, flip angle 10°, total scan time 70 s. For motion tracking, k space data were retrospectively divided into the desired number of frames. All frames were reconstructed and the ¹H frames were used for motion registration. For 3D sub-pixel rigid-body tracking, an algorithm using multi-resolution processing as described in [6] was applied. The

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008)