Multi-Channel Line-Sharing for Rapid T1 Mapping: Application to TAPIR

N. J. Shah¹, I. A. Gilani¹, H. Neeb¹, and A. M. Oros-Peusquens¹

¹Institute of Neurosciences and Biophysics (Medicine), Research Centre Jülich, Jülich, Germany

INTRODUCTION: T_1 mapping with partial inversion recovery (TAPIR) is a novel sequence which enables high-resolution, multislice T_1 relaxation-time mapping [1-3]. TAPIR is a Look-Locker-based T_1 mapping approach based on a partial inversion recovery scheme which is typically faster than traditional inversion recovery based methods. The accuracy and precision of TAPIR to measure T_1 are high, but a reduction in the acquisition time is required to allow for T_1 mapping in clinically acceptable measurement times. Therefore, a scheme termed multi-channel, line-sharing is introduced here as modification of the traditional full *k*-space sampling scheme in TAPIR. In the new approach, the central *k*-space region (the keyhole) is fully sampled whereas the high-frequency *k*-space region in the phase-encode direction is undersampled. In order to avoid fold-over artefacts, missing *k*-space lines are reconstructed using linear interpolation of the corresponding lines acquired for the neighbouring time-points on the T_1 relaxation curve. The method is generally applicable to any mapping scheme acquiring the full *k*-space and is fully compatible with parallel imaging.

METHODS: In vivo data of a single healthy volunteer were acquired on a 4T system using TAPIR. The sequence parameters were: TR=15 ms, TE=2.5 ms, BW=700 Hz/Px, τ =2000 ms, α =40°, TI=10 ms, 14 slices, slice thickness=2 mm, FOV=256 mm x 256 mm, EPI factor=1 and time-points=20. The matrix size was 256x256. An 8-channel phased-array receive coil was used and the *in vivo* data were acquired from each of the 8 channels. The multi-channel, line-sharing method was performed in using Matlab for each of the single-channel *k*-spaces as follows: the high frequency part of *k*-space was undersampled by omitting every second line while fully sampling the keyhole which comprises one-eighth of the full *k*-space. As multiple time-points on the T_1 relaxation curve are sampled in TAPIR, omission of lines is performed in an interleaved way. For odd time-points (1, 3, ...), even lines (2, 4, ...) of *k*-space were omitted whereas that scheme was reversed for even time-point. For each time-point, except the first and the last, the complex valued *k*-space data for the omitted lines were linearly interpolated using the complex-valued data of the corresponding lines of the second last time-point. Correspondingly, omitted lines at the first time-point were substituted from the corresponding lines of the 8 channels were Fourier transformed resulting in the reconstruction of so called line-shared images. For each time-point, the line-shared images from each of the 8 channels were combined by using the sum-of-squares algorithm. Those were used to calculate the line-shared T_1 map. There were no visible fold-over artefacts in the combined line-shared line-shared time-point and the original T_1 map was reconstructed using the original T_1 map was reconstructed using the original T_1 map was reconstructed using the original T_1 map. There were no visible fold-over artefacts in the combined line-shared to based on the Levenberg-Marquardt algorithm. The relative difference between the original T_1 map was reconstructed u

Fig.1.

Fig.1. Schematic representation of the line-sharing concept. The skipped phase-encode lines are shown as thin lines whereas the acquired phase-encode lines are shown as thick lines at the time-points n-1, n and n+1.

Fig.2. a: A representative line-shared *in vivo* T_1 map. b: Relative difference map between the line-shared T_1 map and the original T_1 map of the same slice as shown in (a) Average differences values higher than 5% were clamped to 5%.

RESULTS: A representative line-shared T_1 map of a slice is shown in Figure 2a. The relative difference between line-shared T_1 map and original T_1 map is shown in Figure 2b. For most voxels, the relative difference remains below 3%, with the exception of the ventricles. This is also confirmed by the results shown in Table 1 which demonstrates that the relative systematic error of T_1 due to the line-sharing approach is well below 1% for grey and white matter even at 4T.

DISCUSSION and CONCLUSIONS: The proposed trajectory inherently samples the centre of k-space
densely at each time-point such that the central k-space, the keyhole, satisfies the Nyquist sampling rate. The rest
of the k-space is sparsely sampled. The skipped k-space lines are linearly interpolated by using the preceding and
succeeding time-points. This method has the potential to reduce the total acquisition time by 40%. The
reconstructed line-shared T_1 maps exhibit high quality without visible artefacts. As the additional systematic error
for most brain tissue (i.e. grey and white matter) remains significantly below 1%, the proposed line-sharing
approach offers the possibility to significantly accelerate the measurement without introducing additionally
significant error components. The method is generally applicable to relaxation time mapping techniques be they
T_1 , T_2 , or T_2^* . Further, given the acquisition of a keyhole, the line-sharing method is fully compatible with parallel
imaging whereby a further reduction in the number of peripheral lines could be achieved. The precision of the
method for T_1 mapping is expected to increase with increasing field (longer T_1), where the interval of highest
variation – and thus highest error for interpolation - on the relaxation curves is sampled with a larger number of
points.

Range of T ₁ Values (ms)	Percentage
	Difference (%)
$500 \le T_1 < 1000$	0.26
$1000 \le T_1 < 1500$	0.32
$1500 \le T_1 < 2000$	0.36
$2000 \le T_1 < 2500$	2.81
$2500 \le T_1 < 3000$	1.22

Table.1. Average difference between lineshared and original T_1 map for different T_1 ranges.

REFERENCES: [1] Shah NJ, Zaitsev M, Steinhoff S, Zilles K. A New Method for Fast Multislice T_1 Mapping. NeuroImage 2001;14:1175–1185. [2] Steinhoff S, Zaitsev M, Zilles K and Shah NJ. Fast T_1 Mapping With Volume Coverage. Magn Reson Med 2001;46:131–140. [3] Shah NJ, Steinhoff S, Zaitsev M. Pulse train, nuclear magnetic resonance tomograph and imaging method. US-Patent: 6,803,762 B2, Oct. 12, 2004.