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INTRODUCTION: MR Doppler is a technique that provides real-time imaging of the velocity profile of blood flow analogous to Doppler 
ultrasound imaging. It provides a mechanism for quickly interrogating valvular flow characteristics, either for identifying valvular stenoses or 
regurgitant flow [1-3]. To detect peak velocity of patients, velocity field of view (FOVv) is often required to be in the range ±4m/s, which results in a 
lower spatial resolution compared to when small FOVv is sufficient. This is because small change in M1 (1st moment of gradient) comes with small 
change in M0 (0th moment of gradient) for time-optimal bipolar waveforms. As suggested in Ref. 4, we can achieve higher spatial resolution by 
traversing circular k-space. We present a flexible design method that makes it easier to realize the desired k-space trajectory in a time-optimal way. 
 
THEORY: Even though it is easy to achieve a circular boundary shape with a simple 
tweaking approach [4], it is not ideal in the sense that the trajectory is defined at the 
boundary since we normally define the density along the kv axis where kz = 0. Thus, 
we want to directly prescribe the points to be traversed in k-space, which turns this 
problem into a traversal through multi-points in k-space while preserving the overall 
time-optimality. Rather than formulating this as an optimization problem, we 
decompose it into sub-sections such that the combined waveform does not lose the 
time-optimality. After breaking the acquisition trajectory into separate sections, we 
separately design time-optimal gradient waveforms using a multidimensional time-
optimal gradient design method [5] with which waveform design becomes a simple 
function denoted as mtg(⋅). Then, the resultant gradient waveform is a sum of sub-
waveforms. 
 
 
 
 
 
 
 
Figure 1 illustrates the advantage of the sub-problem approach over conventional 
bipolar waveform design. It avoids tuning process which is a practical way of 
compensating the ∆M1 offset introduced by the prewinder which adjusts whole k-
space ROI. Even though we design a bipolar gradient satisfying ∆M1(tc,ta), what we 
really want to achieve is ∆M1(td,tb). Thus, we have to iteratively adjust the value of 
∆M1(tc,ta) to have ∆M1(td,tb) meet the requirement. By breaking the bipolar waveform 
into 3 parts (a⇀b, b⇀d’, d’⇀d), we can directly generate the overall waveform by 
concatenating 3 sub-waveforms. The conventional iterative approach is more 
troublesome when designing variable density trajectory where iterative adjustment 
should be performed for every spoke. The new approach reduces the pulse duration 
by merging the prewinder with the 1st spoke (similarly, the last spoke and the 
rewinder). Note that gk(t) must be calculated in the proper order to achieve time 
optimality. For example, we want to decide the section d’⇀d before b⇀d’ for the sake 
of time-optimality. This corresponds to calculating g1,f(t) after g1,b(t) in Fig. 2. 
 
METHODS: Designs were constrained by gradients of 40 mT/m maximum 
amplitude and 150 T/m/s maximum slew rate (GE 1.5T Signa scanner). Waveforms 
of 16ms readout with 4m/s FOVv were used for imaging at the aortic valve using a 
real-time system [6]. The k-space data were gridded and multiplied by a Hamming 
window while applying homodyne partial k-space reconstruction. 
 
RESULTS AND DISCUSSION: We could achieve higher spatial resolution in each 
space-velocity image at the aortic valve as shown in Fig. 3 without harming the 
ability of resolving the velocity spectrum in the velocity dimension. This is applicable 
to other variations like variable-density [3] and interleaved approach [7] to achieve 
higher resolution in velocity since we can accurately prescribe and realize the k-space 
required by these methods. 
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Figure 1. ∆M1 offset introduced by the prewinder on the basic 
bipolar waveform. (a) Gradient waveform of prewinder and the 1st 
main lobe (b) k-space trajectory for the sub-section, a ⇀ d 

Figure 2. Depiction of the time-optimal gradient waveform design 
method (FOVv = 6m/s, ∆v = 1m/s, ∆z = 0.5cm/s). (a) gradient 
waveform (b) trajectory in k-space (c) close-up of the 1st spoke 

 

Figure 3. Comparison of in vivo images (FOVv = 4m/s). (a~c) 
rectangular ROI in k-space, ∆z = 1.0cm (d~f) circular ROI in k-
space, ∆z = 0.5cm (a,d) k-space trajectories (b,e) time-velocity 
images (c,f) space-velocity images at systole. 
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