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Fig. 1. Precision as a function of λ for several N-point protocols tuned for λtune. Here, the 
SNR is the signal-to-noise ratio of the average of N images with minimal exponential 
weighting and in general is a function of λ if the minimal weighting is not zero. Note that the 
precision of protocols with N > 3 is already very close to optimal. Since the convexity of the 
curves is very small, the precision stays within 15% of the best over a broad interval 
0.6 < λ/λtune < 1.5 . As an example of a commonly used scheme, the precision for optimal 6-
equally-spaced-point protocol is superposed. 

N 
tune itλ  

2 0 1.10         
3 0 1.20 1.20        
4 0 1.25 1.25 1.25       
5 0 1.30 1.30 1.30 1.30      
6 0 1.35 1.35 1.35 1.35 1.35     
7 0 0 1.20 1.20 1.20 1.20 1.20    
8 0 0 1.25 1.25 1.25 1.25 1.25 1.25   
9 0 0 1.25 1.25 1.25 1.25 1.30 1.30 1.30  

10 0 0 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 
 

Table 1. Optimal encoding parameters ti for estimating decay constant λ in the vicinity of 
λtune for several N-point methods. Note that all protocols (except N=9) are found to be “two-
point” ones. The N=9 case appears different due to the sampling grid granularity: two 
points out of the three lie on the neighboring grid marks. 
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INTRODUCTION. Estimating the relaxation constant of an exponentially decaying signal from experimental MR data is 
fundamental in diffusion tensor imaging, fractional anisotropy mapping, measurements of transverse relaxation rates and contrast 
agent uptake. An exponentially decaying signal (Eq. [1]) can be described by two parameters: its amplitude ρ and decay rate λ, where t 
is the user-controlled encoding parameter (diffusion weighting or echo time, etc.). Therefore, at least two measurements with different 
encodings t1 and t2 > t1 are needed to estimate λ. It has been shown that within all such “two-point” schemes, the imaging time is used 
most efficiently when (t2 – t1) is chosen to be about 1.29/λ (1). The method also 
requires that the number of averages of the acquisition with encoding parameter t2 to 
be about 18/5 the number of averages with t1. 
In this report we demonstrate numerically that the most efficient multi-point schemes 
(with several, more than two encodings) are not more efficient than the two-point one 
with the same total measurement duration.  
THEORY. In a multi-point acquisition N data points, Si, are collected, each with its own encoding parameter ti. (We assume t1 ≤ t2 ≤ t3 
≤ … ≤ tN with the equal sign allowing repetition of acquisitions with the same encoding.) We also assume that all N acquisitions are 
subject to Gaussian noise with standard deviation σ0 determined by the receiver hardware, spatial resolution and sample properties. 
Then, the optimal acquisition strategy is specified by a set of ti's yielding the highest precision in the decay rate, i.e. the smallest 
variance σλ

2 given by the second diagonal element of the 
2×2 covariance matrix (A+A)-1 of the χ2 fitting procedure. 
The rows of the N×2 matrix A are given by Eq. [2]. We 
perform this optimization in the vicinity of the expected 
decay value λ = λtune and then evaluate σλ at arbitrary λ's.  
METHODS. It is clear that optimal value of t1 is zero 
otherwise the amplitude ρ can be redefined as ρ e–λt1 and 
all ti's as (ti – t1). After this redefinition, ρ is the signal with 
minimal exponential weighting (i.e. signal acquired with 
minimal echo time or diffusion weighting allowed by the 
sequence/hardware) and t1=0. The remaining (N-1) values 
of ti were optimized numerically using a brute-force 
method in (N-1) dimensions on a uniform grid of λtuneΔt = 
0.05 between 0 and 4. The size of the search grid is dictated 

by the flattening of the signal dependence at large λt, 
Eq. [1], while its granularity — by the numerical 
complexity. The optimal values of ti for N between 2 and 
10 are given in table 1. Computation of the last line took 8 
hours on a Pentium IV, 3.4 GHz PC. The dependence of σλ 
on λ using several optimal N-point acquisition strategies is 
shown in Fig. 1.  
CONCLUSION. The optimal N-point protocols presented 
in table 1 reveal that within the search grid all schemes 
(except N=9) are, in fact, two-point methods. The N=9 case 
appears different due to the sampling grid granularity: two 
points 1.25 and 1.30 out of the three lie on the neighboring 
grid marks. Performing the search on a finer grid to 
validate this is computationally intractable. Therefore, we 
conjecture that the highest precision of exponential 
relaxation estimation is achieved using the optimal two-
point method (1). The hardware, sample and duration 
independent measure of this precision can be characterized 
by the dimensionless normalized coefficient of variation ελ 
= (σλ/λ)×SNR= 3.6 (1) where SNR is the signal to noise 
ratio obtained by averaging N acquisitions with minimal 
exponential weighting, S(t1). For example, if averaging N 
such images delivers SNR of 100, then the relative error in 
the decay constant estimation can not be smaller than 
σλ/λ=3.6/100=3.6%.  
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