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INTRODUCTION: We propose a new approach to designing RF pulses which achieves equiripple excitation profile. It formulates the RF design 
problem as a convex optimization problem. Thus, other physical constraints (e.g. peak RF) and regularization terms (e.g. RF power) can be easily 
embedded into the problem if they are represented in the form of convex functions. This approach can be extended to parallel RF transmission. 
 
THEORY: The convex optimization technique was introduced to find the optimal coefficients in a filter design problem [1]. Lu et al. showed that 
the SDP-based method, a subclass of convex optimization, can be useful in designing optimal 2-D filters [2]. If the system is linear, which is true in 
filter design and within the small-tip-angle (STA) regime [3], the problem can be approximated by defining finely enough discrete input (x) and 
desired output (d), whose relationship is represented by a system matrix (A). We adapted this approach for RF pulse design and it can be categorized 
into two methods based on the way A is defined. 

The optimization problem can be stated as finding the optimal input (x*) whose 
output (y*) is the closest to the desired profile (d) in the sense that it minimizes the 
Chebyshev norm of the error vector (e) and we solve this via convex optimization 
with the aid of solvers like SDPT3 [7]. Method 1 is an indirect mapping between 
the RF pulse (B1(t)) and the magnetization profile (M(r)) but it can handle the non-
linearity of the Bloch equation through the SLR transformation [4]. In contrast, 
Method 2 directly maps the RF pulse to the magnetization profile but works only 
for a STA excitation. 
 
 
 
 
 
 
 
Note that the optimization achieves equiripple error in passband and stopband by 
equalizing the complex amplitude of the weighted error vector. Also, we can 
control the relative ripple size by adjusting the weighting vector (w). For example, 
we can set w to a constant to have equiripple size everywhere. Even though the 
objective function represents a simple ripple size, we can easily combine any other 
convex function such as l2-norm to include regularization since convexity is 
preserved. Also, we can easily specify more constraints to accommodate additional 
physical constraints such as peak RF and RF power. 
 
METHODS: As a feasibility test, we designed and simulated 3 representative 
design examples. Linear-phase pulses with different transition widths are compared 
and different ripple sizes were obtained as in Fig. 1. A quadratic-phase pulse 
example [8] is given to show that an arbitrary phase profile can be used as a target 
profile (Fig. 2). 2-D spatial excitation pulse with variable-density spiral excitation 
k-space is designed in the same way, but by solving a larger problem than 1-D case 
(Fig. 3). When designing RF pulses, we used CVX [9], a MATLAB®-based 
modeling system, to formulate the optimization problem, and the results were fed 
into the simulator (T1, T2 ignored) [10] to verify the excitation profiles. 
 
RESULTS AND DISCUSSION: We demonstrated the possibility of utilizing pre-
developed convex optimization solvers in designing RF pulses, specifically for an 
equiripple excitation profile. This is advantageous since it finds an optimal solution 
and is ready for including additional object functions and constraints in convex 
form, which simplifies the RF pulse design problem. 
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Figure 1. Linear-phase pulses via Method 2 for different transition 
widths (blue: 5mm, red: 10mm) (a) RF pulses (θ = 0.1 rad) (b) 
simulated excitation profiles  

Figure 2. Quadratic-phase pulse via Method 1 (n = 400, fp = 0.0475, 
fs = 0.0550, k = 120, grey bands indicate “don’t care” region) (a) 
designed filter (b) RF pulse (θ = π/2 rad) (c,d) simulated excitation 
profile 

 

Figure 3. 2-D spatial excitation pulse via Method 2 (a) excitation k-
space (b) waveforms (θ = 0.1 rad - blue: B1,x, red: B1,y) (c,d) simulated 
excitation profile 

y = Ax, e = d – y where x ∈ RNx1, y ∈ RMx1 
� Method 1: DFT (SLR transformation required [4]) � xn = f(tn), ym = F(ωm) [2] 
� Method 2: STA approximation � xn = B1(tn), ym = M(rm) [5] 
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