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INTRODUCTION: At 7T, B1+ inhomogeneity for human brain imaging causes spatially inhomogeneous flip-angle with detrimental
non-uniformity for both signal-to-noise ratio (SNR) and image contrast. Several RF design approaches have been suggested to
compensate for this inhomogeneity, including adiabatic pulses (1), RF-shimming (2), and spatially tailored excitation designs (3-5). In
this work we applied 8-channel parallel excitation waveforms in the low-flip-angle regime with echo-volumnar k-space trajectories
(4,5) that deposit slice-selective sinc “spokes” in k,, whose complex amplitudes are modulated in (ky.k,) to mitigate in-plane B1+
inhomogeneity. We designed parallel RF spoke pulses with magnitude least squares criteria, spoke location optimization, and BO field
map incorporation (6,7) that demonstrated excellent B1+ mitigation for brain imaging on three human subjects at 7T.

METHODS: A 7T scanner equipped with a 16-channel degenerate birdcage coil coupled with a butler matrix (Fig 1) to excite 8 optimal
birdcage modes was used for all experiments. Quantitative B1+ mapping was performed by first estimating the proton-density
weighted birdcage receive profile by transmitting (sequentially, at 4 voltage levels, TR=10s) and receiving with the birdcage
circularly-polarized (CP) mode. The four images were fitted to extract the proton-density weighted receive profile. Low-flip images
for each B1+ mode were then acquired and divided by the proton-density receive to obtain the quantitative B1+ maps. Parallel RF
waveforms were designed to mitigate the measured B1+ field by a 1.67-ms long two-spoke trajectory (Fig 2) and magnitude least
squares criteria with an optimized, symmetric k-space sampling that significantly improved magnitude profile uniformity and
decreased RF power compared to conventional least squares. A BO field map was incorporated to minimize the impact of local field
variations. The parallel mitigation excitation was compared to both a conventional 1-ms long sinc pulse in a birdcage mode, and to 1-
ms long RF shimming equivalent to a single-spoke excitation at the center of excitation k-space. The excitation performance was
quantified by calculating the standard
deviation within the field of excitation
(FOX), as well as by the fraction of pixels
in the FOX within a 10% and a 20%
bracket around the mean excitation.
RESULTS: The magnitude and phase of the
quantitative B1+ mapping of the 8 applied
excitation modes of the array are shown for
one subject in Fig 3. Figures 4 through 6
show excitations due to the sinc pulse, RF
shim, and two-spoke parallel excitations,
along with line plots at six equi-spaced
horizontal sections. A general trend is seen
in mitigation performance with RF shim
improving on the sinc excitation, and the
fully parallel two-spoke excitation yielding
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