Sparsity-Enforced Joint Spiral Trajectory & RF Excitation Pulse Design
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INTRODUCTION. Algorithms have recently been proposed that jointly optimize excitation k-space trajectories & RF F‘g-ei;l‘e';am’;‘:“:ifz‘gi':n&
excitation pulses [1-4]. Each relies on a small-tip-angle assumption and has been shown to produce higher-quality
excitations or shorter excitation pulses than conventional 3D spoke-based [1,2], 2D echo-planar (EP) [3], and 2D spiral
trajectories [4]. Here we propose a sparsity-enforcement algorithm that jointly determines sparse, quickly-traversable k- .
space trajectories and excitation pulses. The method is applicable to single- as well as multi-channel transmission
systems. An L; penalty is used when searching over a large number of possible trajectory segments to reveal a small
subset of these segments (along with an RF pulse) that alone form a high-fidelity version of a user-specified target excitation. These segments may be
= = e F= of any shape or size, but here, we provide the algorithm with candidate rings in k-space, thus
Subset, and Resulting 1.5 ms Trajectory focusing on the optimization of spirals. Simulations are conducted using data from a single-
15_5:;132;1{23;&3“ channel 7T system: for a Gaussian-shaped target and inhomogeneous transmit profile, we show
that sparsity-enforced spirals lead to improvements in both excitation quality & pulse duration
relative to conventional radially-undersampled (“accelerated”) spirals.
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METHODS. Transmission profile & desired target magnetization pattern. Fig. 1 depicts the transmit
profile, r), of a birdcage coil in a water phantom at 7T, along with the desired magnetization pattern, d(r).
Forming d(r) in the presence of the inhomogeneous Sr) is non-trivial.

Conventional spirals. Consider a spiral whose radii are spaced at the Nyquist-limit (as defined by the desired
1 0 kelemd 4 FOV). Defining an unaccelerated Nyquist-sampled spiral an “R=1" spiral, the conventional way to sparsify
(accelerate) the trajectory is to radially undersample its rings by a factor of R. This process does indeed
accelerate the trajectory and reduce pulse duration, but does not explicitly take the desired magnetization pattern into account.

Sparsity-enfor ced spiral design. We develop a spiral acceleration method that accounts for d(r) up-front and determines target-specific trajectory-pulse combinations.
We start by deriving the algorithm for a single-channel system. Imagine C contours (e.g., ellipses,

rings) in k-space; for each contour ¢, N; k-space locations along the contour are known: Kej, ..., Kene Fig. 3: Sparsity-Enforced 4-Ring RF Pulse and Gradients
Overall, Ny = N; + -+ + Nc discrete k-space points are known. The goal is to find the smallest contour
subset along with a corresponding pulse such that when the pulse is played along the path defined by
the small set of contours, a high-fidelity version of d(r) is produced; the contour segments in the small
subset may then be connected via gradients to yield a highly-sparse, fast k-space trajectory. We pose an
optimization that seeks an energy weighting to place in k-space to form d(r), but where a penalty is
incurred whenever a contour experiences a nonzero energy deposition. This ensures only a small
number of contours will be used. First, the linearized formalism of [5] is applied, allowing us to relate
energy placed along each k-space contour to the resulting magnetization, m(r): m = SC,g, + -+ +
SCcOc = Awliot (Eq. 1), where m € C™ contains samples of m(r) atr, ..., rys, S€ C"Mis a 0 05 ms 1 5 0 05 ms 1 15
matrix of r) samples, & g. € C\° contains weights the transmit channel places at the N k-space | Fig. 4: Excitations due to Sparsity-Enforced & Accelerated Spirals
locations of contour c. Each C relates how energy placed along contour C affects the resulting
excitation: formally, C{(U,V)= j¥4;-Mo-exp(ir »Key), C € CYN A = [SC; - SCcl, & G = [G1"
.- gc')". The desired excitation, d(r), is vectorized to d € C". Solving d=A Ge: (Eq. 2) for g
via the pseudoinversion of A, results in a solution where energy is placed along all contours,

i.e., all ||gdls are nonzero, failing to reveal a useful contour subset. Consider however solving .
Eq. 2 while penalizing each nonzero contour energy (each ||gc/l»), which prohibits the use of

many contours while encouraging those that remain to form gcs that approximately solve Eq. 2. NRMSE = 16%
This is accomplished by solving ming {||d - AwGiodl? + A-Ze( l9ell2)} (Eq. 3) for fixed A, where
2 |lgell2) is the Ly-norm of the [|gc|l» contour energies; such a norm encourages sparsity [6,7]. As
A:0—1, increasing numbers of contours have their energies driven to zero, residual error

increases, and smaller contour subsets are revealed. For N < 1000, finding a small contour @
subset takes only several minutes. After solving Eq. 3 for a large A, an optimized Q-contour
subset is formed, comprised of those Q contours whose ||gq|.s are largest. The Q segments are T=15ms T=96ms T=49ms T=15ms
then connected via an in-house method, yielding K(t) & G(t). Finally, the RF pulse is retuned by

truncating A & Qi and least-squares fitting to Eq. 2. For a P-channel parallel transmission system, A, of Eq. 1 will contain PC rather than C submatrices, there will
be PC g weight vectors, and Eq. 3’s regularization term becomes X¢( f9ic" -+ gpe'1l2), ie., only overall contour energy is penalized; whether it is one channel or all
channels that make large contributions to a contour does not matter if the use of this contour greatly helps at forming the excitation.
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RESULTS. A sparsity-enforced spiral trajectory and RF pulse are designed by first defining the C = 16 contours shown in the left panel of Fig. 2; there
are 15 candidate rings, each comprised of 25 k-space points, along with a single point at DC (thus Ny = 376). These contours, along with S(r) and
d(r), are provided to the method, X is set to 0.30, and Eq. 3 is then solved in under 2 minutes. Four rings are retained as the sparsity-enforced subset
and appear as overlays on the left panel of Fig. 2. The right panel of Fig. 2 shows how the 4-ring subset is connected into a 1.5-ms trajectory, and Fig.
3 depicts the corresponding gradients and retuned RF pulse. Fig. 4 compares excitations due to the sparsity-enforced spiral and R-accelerated
conventional spirals. The 1.5-ms sparsity-enforced spiral significantly outperforms the 4.9-ms, R = 2 spiral. The R =1 spiral does indeed produce a
near-perfect excitation, but is 6.4x longer than the optimized pulse. Note how the sparsity-enforced spiral traverses only a small segment of K-space
yet is capable of forming a high-fidelity version of the box, in spite of the presence of the inhomogeneous r). When R = 7, the conventionally-
accelerated spiral has a duration on-par with the optimized spiral, but has 4x larger error. Thus for fixed excitation quality, the sparsity-enforced
spiral yields shorter pulses, and for fixed pulse duration, it yields lower-NRMSE excitations.

CONCLUSION. A spiral trajectory acceleration algorithm based on sparsity-enforcement concepts has been shown to rapidly calculate fast, high-
quality trajectories & corresponding RF pulses. Sparsity-enforced spiral trajectories significantly outperformed conventional spirals in simulated
trials in a single-channel, 7T, non-uniform transmit profile setting.
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