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INTRODUCTION. Algorithms have recently been proposed that jointly optimize excitation k-space trajectories & RF 
excitation pulses [1-4]. Each relies on a small-tip-angle assumption and has been shown to produce higher-quality 
excitations or shorter excitation pulses than conventional 3D spoke-based [1,2], 2D echo-planar (EP) [3], and 2D spiral 
trajectories [4]. Here we propose a sparsity-enforcement algorithm that jointly determines sparse, quickly-traversable k-
space trajectories and excitation pulses. The method is applicable to single- as well as multi-channel transmission 
systems. An L1 penalty is used when searching over a large number of possible trajectory segments to reveal a small 
subset of these segments (along with an RF pulse) that alone form a high-fidelity version of a user-specified target excitation. These segments may be 

of any shape or size, but here, we provide the algorithm with candidate rings in k-space, thus 
focusing on the optimization of spirals. Simulations are conducted using data from a single-
channel 7T system: for a Gaussian-shaped target and inhomogeneous transmit profile, we show 
that sparsity-enforced spirals lead to improvements in both excitation quality & pulse duration 
relative to conventional radially-undersampled (“accelerated”) spirals. 
 

METHODS. Transmission profile & desired target magnetization pattern. Fig. 1 depicts the transmit 
profile, S(r), of a birdcage coil in a water phantom at 7T, along with the desired magnetization pattern, d(r). 
Forming d(r) in the presence of the inhomogeneous S(r) is non-trivial. 
Conventional spirals. Consider a spiral whose radii are spaced at the Nyquist-limit (as defined by the desired 
FOV). Defining an unaccelerated Nyquist-sampled spiral an “R=1” spiral, the conventional way to sparsify 
(accelerate) the trajectory is to radially undersample its rings by a factor of R. This process does indeed 

accelerate the trajectory and reduce pulse duration, but does not explicitly take the desired magnetization pattern into account. 
Sparsity-enforced spiral design.  We develop a spiral acceleration method that accounts for d(r) up-front and determines target-specific trajectory-pulse combinations. 
We start by deriving the algorithm for a single-channel system. Imagine C contours (e.g., ellipses, 
rings) in k-space; for each contour c, Nc k-space locations along the contour are known: kc,1, …, kc,Nc. 
Overall, Nk = N1 + ··· + NC discrete k-space points are known. The goal is to find the smallest contour 
subset along with a corresponding pulse such that when the pulse is played along the path defined by 
the small set of contours, a high-fidelity version of d(r) is produced; the contour segments in the small 
subset may then be connected via gradients to yield a highly-sparse, fast k-space trajectory. We pose an 
optimization that seeks an energy weighting to place in k-space to form d(r), but where a penalty is 
incurred whenever a contour experiences a nonzero energy deposition. This ensures only a small 
number of contours will be used. First, the linearized formalism of [5] is applied, allowing us to relate 
energy placed along each k-space contour to the resulting magnetization, m(r): m = SC1g1 + ··· + 
SCCgC = Atotgtot (Eq. 1), where m ∈ C

Ms
 contains samples of m(r) at r1, …, rMs, S ∈ C

Ms×Ms is a 
matrix of S(r) samples, & gc ∈ C

Nc contains weights the transmit channel places at the Nc k-space 
locations of contour c. Each Cc relates how energy placed along contour c affects the resulting 
excitation: formally, Cc(u,v)= jγ∆t·M0·exp(jru·kc,v), C ∈ C

Ms×Nc, Atot = [SC1 ··· SCC], & gtot = [g1
T 

··· gC
T]T. The desired excitation, d(r), is vectorized to d ∈ C

Ms. Solving d=Atotgtot (Eq. 2) for gtot 
via the pseudoinversion of Atot results in a solution where energy is placed along all contours, 
i.e., all ||gc||2s are nonzero, failing to reveal a useful contour subset. Consider however solving 
Eq. 2 while penalizing each nonzero contour energy (each ||gc||2), which prohibits the use of 
many contours while encouraging those that remain to form gcs that approximately solve Eq. 2. 
This is accomplished by solving minG {||d - Atotgtot||2

2 + λ·∑c( ||gc||2 )} (Eq. 3) for fixed λ, where 
∑c( ||gc||2 ) is the L1-norm of the ||gc||2 contour energies; such a norm encourages sparsity [6,7]. As 
λ:0→1, increasing numbers of contours have their energies driven to zero, residual error 
increases, and smaller contour subsets are revealed. For Nk < 1000, finding a small contour 
subset takes only several minutes. After solving Eq. 3 for a large λ, an optimized Q-contour 
subset is formed, comprised of those Q contours whose ||gc||2s are largest. The Q segments are 
then connected via an in-house method, yielding k(t) & G(t). Finally, the RF pulse is retuned by 
truncating Atot & gtot and least-squares fitting to Eq. 2. For a P-channel parallel transmission system, Atot of Eq. 1 will contain PC rather than C submatrices, there will 
be PC gp,c weight vectors, and Eq. 3’s regularization term becomes ∑c( ||[g1,c

T
 ··· gP,c

T]T||2 ), i.e., only overall contour energy is penalized; whether it is one channel or all 
channels that make large contributions to a contour does not matter if the use of this contour greatly helps at forming the excitation. 
 

RESULTS. A sparsity-enforced spiral trajectory and RF pulse are designed by first defining the C = 16 contours shown in the left panel of Fig. 2; there 
are 15 candidate rings, each comprised of 25 k-space points, along with a single point at DC (thus Nk = 376). These contours, along with S(r) and 
d(r), are provided to the method, λ is set to 0.30, and Eq. 3 is then solved in under 2 minutes. Four rings are retained as the sparsity-enforced subset 
and appear as overlays on the left panel of Fig. 2. The right panel of Fig. 2 shows how the 4-ring subset is connected into a 1.5-ms trajectory, and Fig. 
3 depicts the corresponding gradients and retuned RF pulse. Fig. 4 compares excitations due to the sparsity-enforced spiral and R-accelerated 
conventional spirals. The 1.5-ms sparsity-enforced spiral significantly outperforms the 4.9-ms, R = 2 spiral. The R = 1 spiral does indeed produce a 
near-perfect excitation, but is 6.4x longer than the optimized pulse. Note how the sparsity-enforced spiral traverses only a small segment of k-space 
yet is capable of forming a high-fidelity version of the box, in spite of the presence of the inhomogeneous S(r). When R = 7, the conventionally-
accelerated spiral has a duration on-par with the optimized spiral, but has 4x larger error. Thus for fixed excitation quality, the sparsity-enforced 
spiral yields shorter pulses, and for fixed pulse duration, it yields lower-NRMSE excitations. 
 

CONCLUSION. A spiral trajectory acceleration algorithm based on sparsity-enforcement concepts has been shown to rapidly calculate fast, high-
quality trajectories & corresponding RF pulses. Sparsity-enforced spiral trajectories significantly outperformed conventional spirals in simulated 
trials in a single-channel, 7T, non-uniform transmit profile setting. 
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Fig. 1: Transmit Profile &
Desired Magnetization
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Fig. 2: Candidate Rings, Sparsity-Enforced 4-Ring
Subset, and Resulting 1.5 ms Trajectory
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Fig. 3: Sparsity-Enforced 4-Ring RF Pulse and Gradients
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Fig. 4: Excitations due to Sparsity-Enforced & Accelerated Spirals
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