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INTRODUCTION. Parallel transmit (pTX) systems reduce the duration of spatially-tailored excitation pulses by 
utilizing the array’s spatial transmit patterns to allow under-sampling of excitation k-space [1]. Hardware costs 
and complexity, however, limit the number of channels. Forming linear combinations of array elements can 
transform the spatial modes of the array into a different basis set, potentially capturing a majority of the TX 
efficiency and acceleration capabilities in a subset of the modes. The available TX channels are then applied 
only to a subset of array modes, which are chosen based on their contribution to TX efficiency and encoding. 
When designing & choosing reception modes, the object being imaged is unknown and the choice of array 
modes must be based on general sensitivity and encoding considerations. In the TX case, however, one knows 
and in fact chooses the desired excitation pattern, so explicit incorporation of this knowledge into the selection 
of the mode subset may be useful.  Here we propose a fast target-dependent sparsity-enforced subset selection 
(SESS) algorithm that explicitly accounts for the desired excitation pattern when choosing the mode subset, in 
contrast with principal component or covariance analysis methods that use only the spatial profiles and 
determine only a single subset for all excitations [2]. Here, we use SESS to determine 8-mode subsets of a 16 
mode array for use on an 8-ch pTX system at 7T when forming slice-selective spatially-tailored excitations 
with uniform and ring-shaped target patterns in a water phantom [3]. Excitations using the SESS subsets are 
compared to those chosen from covariance analysis of the mode spatial maps.  Brute-force search finds that for 
this coil, SESS actually finds the best of all 12,871 possible subsets for the uniform excitation, and a near-optimal subset for the ring-shaped one. 
 

METHODS. Fig. 1 shows the 16 TX modes (Sn) of a stripline array in an orthogonal birdcage (BC) basis configuration, as obtained via a Butler 
matrix [4]. Modes include those with correct polarization for excitation (CP modes) and those with the opposite polarization (ACP modes). 
Spoke-based pulses. Spoke pulses are comprised of weighted sinc-like segments in kz placed at different locations in (kx, ky) using an echo-
volumnar trajectory [3]. The sincs excite a slice in z, while (kx, ky) weights tailor the in-plane excitation into a chosen pattern. Fixing the 
placement of T spokes, along with spoke shape and gradients (G(t)), ends up fixing the slice-selective properties of the pulse. Users are then 
free to shape the in-plane pattern by choosing the weights that each of the P modes deposits at each of the T locations. 
Sparsity-Enforced Subset Selection (SESS). SESS is an optimization that designs a set of waveforms to drive the N modes to form the target 
pattern while imposing a strong penalty whenever a mode waveform becomes nonzero. This penalty enforces sparsity on the number of modes 
and reveals a small subset of good modes & corresponding waveforms. Here we derive SESS for T-spoke trajectories of duration L, where 
spoke locations are fixed at k1, …, kT , and k(t) is known ∀ time t. To begin, assume that all N modes may be driven. The equations that relate 

the pulses used to drive each mode to the resulting magnetization m(r) are linearized [5] to 
yield m=S1Fg1 + ··· + SNFgN = Atotgtot (Eq. 1), where m ∈ C

Ms
 contains samples of m(r) at 

r1, …, rMs, Sn ∈ C
Ms×Ms is a matrix of Sn(r) samples, gn ∈ C

T contains weights mode n places 
at T spoke locations, F(u,v)= jγ∆t·M0·exp(jru·kv)·exp(j∆B0(ru)(tv-L)), F ∈ C

Ms×T, Atot = [S1F 
··· SNF], & gtot = [g1

T ··· gN
T]T. Eq. 1 thus describes the in-plane excitation arising when the 

modes deposit energy at spoke locations. The desired excitation, 
d(r), is vectorized to d ∈ C

Ms. Solving d=Atotgtot (Eq. 2) for gtot via 
the pseudoinversion of Atot will indeed reveal good weightings, but 
results in a solution where all modes deposit energy, i.e., all ||gn||2s 
are nonzero, failing to reveal a useful small mode subset. Consider 

however solving Eq. 2 while penalizing each nonzero mode energy (each ||gn||2), explicitly prohibiting the use of many modes, while 
encouraging those that do remain in use to have gns that still approximately solve Eq. 2. This is accomplished by solving mingtot {||d - Atotgtot||2

2 
+ λ·∑n( ||gn||2 )} (Eq. 3) for fixed λ, where ∑n( ||gn||2 ) is the L1-norm of the ||gn||2 mode energies; such a norm encourages sparsity [6]. As 
λ:0→1, increasing numbers of modes have their energies driven to zero, residual error increases, and smaller subsets of modes & weightings 
are revealed. SESS differs from [7] because here we enforce sparsity on modes rather than on spoke locations. For reasonable T, finding a 
SESS subset takes only several seconds. After solving Eq. 3 using a large λ, those P modes with the largest ||gn||2s are chosen as the optimized P-mode subset. 
Pulse design. For a fixed P-mode subset, weights are tuned by truncating the N - P non-chosen terms from Atot & gtot & least-squares fitting to Eq. 2. 
 

RESULTS. Uniform excitation. The target is a uniform excitation and a 3-spoke trajectory is used (Fig. 2). Excitation quality is evaluated across four 
subsets: 8 CP modes, 8 brightest modes, 8 SESS-optimized modes (λ = 0.3), and 8 globally-optimal (GO) modes. The latter is found via brute-force 
search over all (16 choose 8) subsets. For each subset, weightings and 3-spoke pulses are designed and undergo Bloch simulation. Figure 3 shows 
that the reasonable choice of CP modes produces the worst excitation. Choosing 
the 8 bright modes improves NRMSE by 1.13x, but fails to reduce σ. The SESS 
modes (Sp(r), p ∈{1,2,4,5,8,9,10,16}) produce a noticeably more uniform 
excitation; σ & NRMSE improve by 1.16x and 1.20x relative to the bright mode 
result. The bright subset makes use of S3(r) (with L2-energy 0.75), whereas SESS 
opts to use S5(r) (with L2-energy 0.32): using a “dark mode” in lieu of a bright 
one results in a better excitation. Brute-force search over all mode subsets shows 
that SESS determines the best subset among all (16 choose 8) = 12,871 possible. 
Ring-shaped excitation. For the ring-shaped target pattern and 9-spoke trajectory 
(Fig. 4), choosing the bright modes produces the worst excitation. SESS modes (Sp(r), p ∈{1,2,5,6,8,9,10,11}) outperform both CP and bright 
modes, producing a 1.12x lower-error excitation relative to CP. SESS’s subset here differs from the GO one, but leads to essentially the same result: 
the GO excitation has only 1.006x lower NRMSE. The GO and SESS subsets do not equal those of the uniform case: different targets call for the use 
of different modes. Further, dark modes are present in both the SESS and GO solutions (e.g., each chooses S6(r), the 2nd darkest of all 16 modes). 
 

CONCLUSION. SESS finds non-obvious mixtures of light and dark modes, providing increases in excitation quality relative to CP and bright modes. 
Furthermore, SESS exploits knowledge of the desired target excitation pattern and produces target-specific mode subsets. 
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Fig. 1: Channel Modes, Water Phantom at 7 Tesla
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Fig. 5: Mode Subsets & Resulting Excitations, Ring Target
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Fig. 3: Mode Subsets & Resulting Excitations, Uniform Target

Sparsity-Enforcement finds the Globally-Optimal Subset
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Fig. 2: k-Space Trajectory,
Uniform Target
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