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Introduction: In SENSE [1], an unfolding matrix is resolved from a set of linear equations based on the correlation of a few pixels that are superimposed onto one 
another in the reduced FOV/aliased image. Due to the ill-conditioning problems, the resolved unfolding matrixes may amplify the noise at some positions in image-
space and this “pixel by pixel” reconstruction method considerably suffers from g-factor noise. In this study, a “region by region” reconstruction method is introduced 
by taking advantage of the spatial correlation of the unfolding matrixes for neighboring pixels. By this method, the entire image space can be divided into many small 
regions and the pixels in a small region and those that are superimposed onto this region can be reconstructed by resolving a common set of equations. Compared with 
the conventional SENSE, this method can reduce the ill-conditioning problems and improve the noise performance in the regions where g-factors are high. Compared 
with GRAPPA, this method minimizes the least-square error in reconstruction regionally instead of globally and hence gives better image quality in the regions where 
g-factors are low. 
Theory: In SENSE, a pixel can be reconstructed by the multiplication of a row vector of the unfolding matrix and a column vector consisting of the image values at the 
corresponding superimposed position in the N-channel aliased images. This reconstruction can be more generally represented by the weighted summation of the N-
channel aliased images as shown by Eq. 1, where m(x,y) is the reconstructed image, N is the number of coils, ai(x,y) represents the aliased image acquired from the ith 
channel, and ui(x,y)’s are the weights for the reconstruction of the pixel at the position (x,y). In this work, we introduce a constraint that these weights are spatially 
smooth. This is reasonable because these weights are dependent on the smooth coil sensitivity profiles. Accordingly, a set of low-order polynomials can be used to 
approximate these weights within a small region in image space as shown in Eq. 2, where kij’s are the polynomial coefficients, and RUC represents the region under 
consideration, which is consisted of multiple neighboring pixels. The entire FOV can be divided into many small RUCs. The optimal coefficients kij’s for each RUC can 
be calibrated from either auto-calibration signals or pre-scan data by the minimization of least square error function defined in Eq. 3, where ψij is the noise correlation 
between the ith and jth channel, the superscript * represents the conjugate operation, αRUC is the Lagrange multiplicator to balance the noise amplification and 
reconstruction error within the RUC, X(x,y) is a low-resolution image from the calibration data, and ai

X(x,y) is an aliased image by downsampling the calibration data 
from the ith channel. The first term starting with the factor αRUC in Eq. 3 is equivalent to that used in SENSE for regularization of inverse matrix [3]. The minimization 
of Eq. 3 requires its partial derivative with respect to the coefficients kij’s equal to zero. This will generate a set of linear equations and the optimal coefficients can be 
resolved by the calculation of pseudo-inverse. With the optimal coefficients, Eqs. 1 and 2 can be used to reconstruct the image within one RUC and the entire image can 
be reconstructed region by region. 

Methods: Brain, spine, breast and cardiac images were collected using multiple-
channel coil arrays. The acquired data were fully sampled in k-space. Only the 
partial k-space data were used for reconstruction. Auto-calibration signals were used 
as the calibration data. The same partial k-space data were used for the regionally 
optimized reconstruction and GRAPPA with a kernel size of 4×5. The reconstructed 
images were compared. Noise amplification was investigated by comparing the 
SENSE g-factor maps with the error maps, which were the difference images 
between the reconstructed images and the reference images calculated by the 
Fourier transform of the fully sampled data. The reconstruction error was defined as 
the ratio of the power of an error map to that of the reference image. 
Results: Fig. 1 gives the plots of reconstruction error against the reduction factor. It 
can be seen that the regionally optimized reconstruction gives less error than 
GRAPPA, especially at high reduction factors. Fig. 2 gives an example of breast 
imaging with a reduction factor of 4. It can be seen that the error map of the 
regionally optimized reconstruction are more uniform than the SENSE g-factor 
map, which implies that the noise amplification due to high g-factors is efficiently 
suppressed. Obviously, GRAPPA can also suppress the noise amplification at high 
g-factor regions, but generates more error than the regionally optimized 
reconstruction in low g-factor regions. Figure 3 shows an example of brain imaging 
with a reduction factor of 4. It can be seen that the image from the regionally 
optimized reconstruction is visibly better than the GRAPPA image. 
Discussion and Conclusion: Regionally optimized reconstruction use the spatial 
correlation of neighboring pixels to reduce the ill-conditioning problems. Accordingly, noise amplification is suppressed at those positions where g factors are high. 
Even though this costs a little increase of noise at their neighbors, the total noise in the entire local region is minimized. In the regions where g-factors are low, SENSE 
is optimum because of the pixel by pixel optimization in reconstruction. The regionally optimized reconstruction is a very good approximation to SENSE in low g-
factor regions because every RUC can be very small. This is different in GRAPPA: GRAPPA operates in k-space and the reconstruction is optimized over the entire 
image-space. As a result, the reconstruction over the entire FOV may be degraded by the severe ill-conditioning at a small number of positions. For this reason, 
regionally optimized reconstruction has better performance than GRAPPA in low g-factor regions, as shown in Fig. 2(c) and (d). In conclusion, regionally optimized 
reconstruction is an efficient way to improve the noise performance in partially parallel imaging and can be used in general imaging applications. 
Reference: 1). Prussmann , K.P. et. al., MRM 42: 952-962  (1999). 2). Griswold, M. A. et. al., MRM 47:1202-1210 (2002). 3) King KF, et. al., ISMRM 2001, p1771. 
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Fig. 2 An example of breast imaging. (a) Reference image; (b) SENSE g-
factor map; (c) Error map of GRAPPA; (d) Error map of regionally 
optimized reconstruction. 
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Fig. 3 An example of brain imaging. (a) Whole image; (b), (c) and (d) are 
zoomed images in the region marked by white box in (a). (b) Reference image; 
(c) GRAPPA; (d) Regionally optimized reconstruction. 
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Fig. 1. Reconstruction error in percentage for different imaging 
applications, ‘o’, GRAPPA; ‘*’, Regionally optimized reconstruction 
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