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The g-factor map [1] is a useful way to visualize the increase in noise due to parallel imaging 

reconstruction.  Robson et al. have shown a general approach for computing g-factor maps that 
repeatedly injects a small amount of noise into the data and reconstructs the image [2].  Still, it is 
useful to have analytical approaches that directly calculate the g-factor map, where possible.  It has 
been shown that g-factor maps can be created for GRAPPA reconstructions when the calibration 
phase encodes (ACS lines) are not included as data for the final image, allowing the reconstruction 
coefficients to be converted into the image domain [3,4].  When the ACS lines are included in the 
final reconstruction, forming a g-factor map for this variable density trajectory becomes more 
difficult because the operation of filling in missing data can no longer be treated strictly as a 
convolution in k-space.   

In this work, we describe how g-factor maps can be computed directly from the unaliasing 
coefficients used in autocalibrated parallel imaging.  The proposed method is implemented and 
results are shown demonstrating the usefulness of g-factor maps in two important areas pertaining 
to autocalibrated parallel imaging: coil combination and reconstruction kernel size. In this study, 
we focus on variable density Cartesian acquisitions, however the proposed method can also be used 
to analytically compute g-factor maps for non-Cartesian parallel imaging methods that use local k-
space kernels [5-10]. 
Theory   Image space noise covariance maps for separate coil images can be computed from the 
noise covariance between k-space locations, as shown in Fig. 1a.  While there is no noise 
covariance between different k-space locations in unaccelerated scans, the unaliasing coefficients 
in autocalibrated parallel imaging create noise covariance between k-space locations as well as 
between channels (Fig 1b).  Due to the limited k-space extent of unaliasing kernels, image space 
noise covariance maps can be efficiently computed directly from the unaliasing coefficients [11].  
Separate coil images are typically combined using square-root sum-of-squares (SOS), a non-linear 
operation.  However, as illustrated in Fig. 2, this operation can be accurately approximated as a 
linear operation at image locations possessing sufficient signal.  This linear approximation allows 
the g-factor map for the combined image to be computed. 
Methods   A fat/water phantom was scanned at 1.5T (Signa® HDx, GE Healthcare, Waukesha, 
WI) using an 8-channel body array.  An outer acceleration factor of two was used with 12 
additional calibration phase encodes.  The data was reconstructed using 3x3 and 7x7 unaliasing 
kernels, with coil image combination performed by SOS and by linear combination [12], using the 
low-resolution calibration data to estimate relative coil sensitivities.  Analytical computation of g-

factor maps for autocalibrated parallel imaging was 
implemented and used to compute g-factor maps for each 
reconstruction.  The reconstructed images and g-factor maps 
were used to study the image quality differences attributable to 
the choice of kernel size and coil combination method. 
Results  and Discussion   Results are shown in Fig. 3.  The 
analytically computed g-factor maps correctly identified the 
image regions of increased noise amplification.  The computed 
g-factor maps indicate that linear combination of the separate 
coil images, using low resolution coil sensitivity estimates, 
results in a similar signal-to-noise ratio as SOS combination.  
While SOS combination cannot be used with phase-sensitive 
applications, these applications can use linear combination, 
since a complex-valued combined image is generated, without 
incurring any additional SNR penalty from coil combination.  
The choice of unaliasing kernel size is still a challenging task 
for autocalibrated parallel imaging and this choice can 
appreciably impact image quality, as seen in Fig. 3.  Since a g-
factor map can be computed for each potential kernel choice, 
even before the image is reconstructed, g-factor maps can aid in 
automatic kernel size selection.  g-Factor maps provide an 
intuitive way to assess the noise penalty associated with 
different reconstruction parameter choices; the computationally 
efficient analytical method for g-factor map generation 
proposed in this work can make it easier to take advantage of g-
factor maps. 
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