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Overview. Parallel imaging with multiple receivers is a ubiquitous method in MRI, used both clinically and in basic science 
research. GRAPPA [1] based reconstructions aim to fill missing k-space data using a local weighted average of 
neighboring k-space signals acquired by multiple receiver elements. This weighted average can be considered as an 
estimation model to predict the missing samples at the center of the reconstruction kernel, as shown in Fig.1. The number 
of parameters in the model is twice the number of points in the kernel times the 
number of channels. Given a limited set of auto-calibration data the number of 
parameters in the model can rapidly approach the same order as the number of 
equations determined by the number of calibration data points. Over-fitting the 
calibration data makes the result to be sensitive to noise and unstable. At the opposite 
extreme under-fitting the data also results in poor reconstruction and residual aliasing 
artifacts [2]. Both issues become more sensitive at high reduction factors and/or with 
limited reference data. A parsimonious choice of reconstruction kernel would minimize 
the residual fitting error of the model while simultaneously penalizing over-complex 
models. This is the rationale behind the Akaiki Information Criteria (AIC), which is a 
function of the mean squared fitting error, the number of calibration data points, n and 
the number of model parameters, k and given by,                                                                                 Fig.1 

. 
Minimizing this function relative to the kernel support provides an automated 
approach to kernel selection. While this is a general approach permitting the 
selection of kernels of any shape, for simplicity, we assume that the optimal 
kernel prefers points nearest the estimation location and takes the shape of a 
circle. [3] 
Methods. GRAPPA data for R2, R3 and R4 were generated by sub-sampling 
T1-weighted k-space data (FOV 256 mm, matrix 256) acquired on a 3 Telsa 
Siemens Trio (Siemens Medical Solutions, Erlangen, Germany) using a 
product 8 channel head coil assuming a calibration pre-scan of 16 auto-
calibration lines. For each reduction factor the kernel diameter was varied 
from two to sixteen and the AIC was computed for each diameter. The 
optimal kernel is chosen as the minimum of the AIC curve with respect to 
kernel diameter. 
Results. The computed AIC curves for each reduction factor are shown in 
Fig. 2. It can be seen that in each case a global minimum is achieved, leading 
to a kernel diameter of 6.0 for R2, 6.5 for R3 and 8.0 for R4. Reconstructions 
(R4) based on these choices of kernel diameter and suboptimal choices 
(d=4.0, d=12.0) are shown in Fig. 3. It is evident that the AIC chosen kernel 
led to low aliasing and low noise, and provides an excellent compromise 
between artifact reduction and noise reduction.                                                                                     Fig.2 
Discussion. GRAPPA reconstructions typically assume a 4x5 kernel approach which may be not optimal in general 
applications. This paper demonstrates the utility of AIC for automated determination of the GRAPPA kernel size. Rather 
than an exhaustive search to determine the proper kernel 
empirically, the present implementation only searches a subset of 
circular kernels and is therefore computationally efficient. In 
addition, the AIC curves are convex, so a rapid binary search is 
possible further minimizing the search time. While only 2D imaging 
results are demonstrated here, the method is directly extensible to 
3D approaches assuming spherical kernels.      
Conclusion. The Akaike Information Criterion provides a robust 
automatic approach to parallel imaging optimization.                                                                  Fig.3 
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