G-factor Maps of Conjugate Gradient SENSE Reconstruction

B. Liu¹, E. Abdelsalam², J. Sheng¹, and L. Ying¹

¹Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States, ²MR, GE Healthcare, Waukesha, WI, United States

INTRODUCTION:

In parallel imaging with Cartesian sampling, the spatially varying g-factor represents the loss in signal to noise ratio (SNR) due to ill-conditioning of the matrix inverse in SENSE reconstruction, and depends on the acceleration rate, the number of coils, and coil geometry. However, the spatially dependent g-factor of other trajectories (e.g. variable-density or non-Cartesian trajectory) is not well understood. The reconstruction SNR (average over the entire image) has been used to loosely calculate the average g-factor as $SNR_{full}/(\sqrt{R}SNR_{red})$ where R is the acceleration factor. In this abstract, we propose a method to calculate the generalized spatially varying g-factor map for conjugate gradient (CG) SENSE reconstruction with

arbitrary trajectories. The method allows us to analyze how different trajectories and number of iterations in CG affect the SNR in a spatially dependent way.

THEORY:

For Cartesian SENSE, the image is reconstructed by solving $\mathbf{v} = (\mathbf{S}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{S})^{-1} \mathbf{S}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{a}$ [1] pixel by pixel where v is the desired image vector, \mathbf{a} is the vector of aliased images from all channels, S is the sensitivity matrix (1), Ψ is receiver noise matrix. In this case, the g-factor is defined as $g_{\rho} = \sqrt{\left[(\mathbf{S}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{S})^{-1}\right]_{\rho,\rho}} (\mathbf{S}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{S})_{\rho,\rho}}$ [2] at pixel ρ . For arbitrary trajectories, the image can be reconstructed by solving $(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{\mathbf{v}} = \mathbf{E}^{\mathbf{H}} \mathbf{m}$ [3] (\mathbf{m} is sampled *k*-space data, \mathbf{E} is the encoding matrix as in (1,2)) iteratively using CG method to approximate $\mathbf{v} = (\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{-1} \mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{m}$ [4] numerically. In this case, the g-facor is given by $g_{\rho} = \sqrt{\left[(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{-1}\right]_{\rho,\rho}} (\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})_{\rho,\rho}}$ [5]. The same iterative CG method can be used to calculate the first term $\left[(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{-1}\right]_{\rho,\rho}$ in Eq. [5]. Specially, we calculate $(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{\mathbf{v}} = \mathbf{b}$ using the the iterative CG method, where \mathbf{b} denotes an all-zero image except at pixel ρ whose value is unit one. After several iterations, the value of the obtained "image" $\tilde{\mathbf{v}}$ at the corresponsing pixel ρ gives the approximation of $\left[(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})^{-1}\right]_{\rho,\rho}$. The second term in Eq. [5] $(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})_{\rho,\rho}$ does not need matrix inversion and can be easily obtained by taking the pixel ρ of the image obtained by a forward encoding $(\mathbf{E}^{\mathbf{H}} \mathbf{\Psi}^{-1} \mathbf{E})\mathbf{b}$.

METHOD AND RESULTS:

We acquired a water phantom data on a Hitachi Airis Elite (Kashiwa, Chiba, Japap) 0.3T permanent magnet scanner with a four-channel head coil and a single slice spin echo sequence (TE/TR = 40/1000ms, 8.4KHZ bw, 256*256 matrix size, FOV = 220 mm²). The sensitivity maps were estimated using the full k-space data. We compared the g-factors at a reduction factor of 4 for three cases: (a) basic SENSE (using matrix inversion) with uniform Cartesian trajectory; (b) CG SENSE with uniform Cartesian trajectory; and (c) CG SENSE with variable-density (VD) Cartesian trajectory (32 fully sampled central lines and reduction factor of 4 outside). We also compared the g-factors after 3 and 8 CG iterations. The results are shown in Figure 1.

DISCUSSION:

Our results show that the g-factor of the CG SENSE reconstruction has similar spatial variation pattern as that of the basic SENSE reconstruction. However, the value of g-factor in CG SENSE depends on and increases with the number of iterations. It explains the semi-converge property of CG SENSE (3): increasing iterations reduces the aliasing artifacts but increases the noise at the same time, which can be observed in VD-CG case. Proper stopping criterion should be used to balance the aliasing artifacts and noise. In addition, our results show the VD trajectory improves the g-factor at small number of iterations, but does not improve much as iteration number increases. The proposed method can be used to calculate the g-factor for spiral and radial trajectories, as well as to evaluate the SNR improvement by the regularization technique for non-Cartesian SENSE (4).

REFERENCES:

[1] Prussmann KP, *et al*, MRM 42:952-962, 1999. [2] Pruessmann KP, *et al*. MRM 46:636-651, 2001. [3] Qu P, *et al*, MRM 54:1040-1045,2005 [4] Liu B, *et al*, ISMRM 2007, pp. 3349