
Theory: As in the two dimensional case, adjacent read points along a single ray in 
the 3D radial dataset can be used to determine an angular weight set, as shown in Figure 1: 
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where θ and ϕ are the azimuthal and polar angles, respectively, and kr denotes the radius of 
the point along that ray.  In the first equation, ),,( rkS ϕθ
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 is a vector containing the signal 

values for all coils at the appropriate k-space location, and ϕθ ,Ĝ  is the weight set describing 

a shift along this direction; in the second equation, ),,(ˆ
rkS ϕθ is a matrix containing the 

signal values for all coils for the read points along the ray.  The angular weights can be 
written as a combination of the base weight sets with the appropriate distance relationship: 
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Introduction: GRAPPA Operator Gridding (GROG) [1] has been shown to yield gridded non-Cartesian images comparable to those generated 
using the gold-standard convolution gridding.  GROG works by shifting non-Cartesian points to their nearest Cartesian locations using parallel 
imaging weight sets; for the two dimensional case, two base weights sets, one for each logical k-space direction, are required.  This method is 
adventageous for 3D gridding due to its low memory requirements, as no grid oversampling is required and an effective 1 x 1 kernel is employed, 
and can be performed quickly without the need for additional parameters.  The necessary GROG weights for 2D gridding can be calculated from the 
non-Cartesian datapoints for 2D radial and spiral datasets [2] by generating angular weight sets which are themselves combinations of the base 
weights.  This abstract demonstrates that a similar method can be employed to generate the GROG weights for 3D radial data, and this self-
calibrating 3D GROG is used to grid an Ultra Short Echo Time (UTE) dataset. 
             
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Methods:  The 3D self-calibrating GROG method is demonstrated here for the UTE trajectory.  In vivo UTE datasets (32 channel, 16384 
projections, 128 read-out points, base matrix 128x128x128) were acquired using a 3 T clinical scanner (Tim Trio, Siemens Medical Solutions, 
Erlangen, Germany).  Because the first 30 points of the trajectory were sampled during the gradient ramp up time and did not have the same 
Cartesian spacing as the other points along a given ray, the ramp-sampled points were not included in the GROG calibration.  The base weights Gx, 
Gy, and Gz were calculated using the formulas given above, and the data were gridded using a version of GROG modified to shift points in three 
dimensions.  Once the data were gridded, a Fourier transform followed by an adaptive recontruction [3] was performed to yield the final images. 
 

Results: Four example slices from the UTE dataset gridded using the 3D radial self 
calibrating GROG method are shown in Figure 2.  The 32-channel head coil delivers high 
signal at the edges of the head; these details can clearly be seen in the GROG images.  The 
gridding time was approximately 8 minutes using unoptimized Matlab code, considerably 
less than the 20 hours required for an INNG [4] implementation on the same computer.  
 

Discussion:  The SC-GROG method, previously demonstrated for 2D radial and spiral 
images, can also be employed to calculate the GROG weights needed to grid three dimensional 
radial data.  This method does not require a density compensation function, convolution 
window, or additional gridding parameters besides the 3D k-space trajectory.  Unlike in 
convolution gridding, GROG does not employ grid oversampling or large convolution kernels 
and thus has less demanding memory requirements.  In addition, this method is more efficient 
than iterative methods which require two Fourier transformations per iteration, a time-
consuming prospect for a large 32-channel dataset.  In conclusion, the 3D SC-GROG method 
depicted here can be used as a fast, simple alternative to standard gridding methods given a 
receiver coil with sensitivity variations in three logical directions. 
 

References 
1   Seiberlich N et al.  MRM 2007 Oct 29. 2   Seiberlich N et al. Proc. ISMRM 2007, pg. 153.  
3   Walsh DO et al. MRM 2000 May;43(5):682-90. 4   Moriguchi H et al. MRM 2004 Feb;51(2):343-52. 
Acknowledgements:  The authors would like to thank Siemens AG Medical Solutions and the Deutsche Forschungsgemeinschaft project JA 827/4-4 for support. 

Figure 1: Three rays along a typical 3D radial trajectory.  Using 
the datapoints along a ray in direction [θ,φ], the angular weight 
set Gθ,φ can be calculated.  The GROG weights for the three 
logical directions can be derived from these angular weights. 

where dx, dy, and dz are the Cartesian distances between adjacent read points in the x-, y-, and z-directions respectively.  It is important to note that 
these values must be constant over the portion of the ray used in order to employ this calibration method.  The non-linear equation for the angular 
weight sets cannot be solved in this exponential form; assuming that the GROG weight sets for each logical direction commute and taking the matrix 
logarithm of the resulting set of equations yields the following equation for each projection, from 1 to Pmax: 
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These equations can be reordered into another set of linear matrix equations, which can be solved coil-by-coil (i.e. a and b run from 1 to Ncoils):  

))],(ˆln()),,(ˆln()),,(ˆ[ln(],,[, baGbaGbaGzdydxdL zyxba ⋅=
rrrr

 

where 
baL ,
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 is a vector of size Pmax containing the matrix elements [a,b] from the matrix logarithms of each of the angular weight sets, the distance 

matrix of size Pmax x 3 holds the Cartesian distances for each projection, and the far right-hand term is a vector of size 3 containing the unknowns for 
the appropriate matrix entries in the logarithms of the GROG weight sets.  By taking the pseudo-inverse of the distance matrix, the matrix logarithm 
elements of the weights sets can be found; the base weights themselves are calculated by taking the matrix exponential of the logarithmic weights.  
GROG can then be performed as in the two dimensional case using the three weight sets along the logical Cartesian axes using these weight sets. 

 

Figure 2: Example images from the UTE dataset 
gridded using the self-calibrating 3D GROG method. 
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