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Introduction: Measurement of receive array coil sensitivities has become an intrinsic part of almost all MR exams. The calibration is used to enable 
parallel imaging (PI) or correct signal modulations due to local receiver array coils. Currently such calibration is relatively rapid (typically 30-60s) and so 
is not unduly intrusive into the exam. However the time needed to calibrate coils is related to the size of the coils which make up the array. As coils 
become smaller, higher resolution images are needed for calibration and so calibration times will increase. Calibration is also prone to error when the 
subject moves between calibration and acquisition (pre-scan calibration) or during acquisition (integrated or ‘auto’ calibration). The potential of parallel 
transmit (PTx) further increases the complexity and time taken to calibrate array coils as both the transmit (B1) and the receive fields require calibration 
leading to calibration times of many minutes[1]. Calibration is necessarily performed on a subject by subject basis due to the interaction between subject 
and array coil which changes the individual coils sensitivity, however no knowledge of prior calibrations is currently used to inform the calibration 
process, on a typical system 5 or more calibration scans may be acquired per day which could be used as a large library of possible calibrations. The 
aim of this work was to explore the variation in receive coil sensitivities across a number of subjects and using this as a training dataset construct a 
compact model of coil sensitivity variation which could be used to reconstruct unknown individual coil sensitivities reducing or removing altogether the 
need for individual coil calibration. 
Theory: Principal component analysis (PCA) is widely used to reduce multidimensional datasets to lower dimensions. Using PCA compact 
parameterized predictive models of new data can be constructed [2]. In this work a data matrix is constructed by reforming each whole volume of coil 
sensitivity data into a single vector for each coil, multiple measurements taken from different subjects are then compiled as columns into a data matrix  

(the training data).The ordered eigenvectors of the covariance of this matrix give us the principle modes of 
variation (principal components, PC) of the data. N PC’s are generated where N=the number of 
measurements (the number of training datasets). A weighted linear combination of these N components can 
exactly replicate any of the coil sensitivities in the training dataset. The only parameters to be determined 
are a single scalar weight for each component. If the span of all typical variations in the input data are 
captured by the training data then a weighted linear combination of these components can replicate data 
that is not part of the training data. A favorable case is when a few of the PC are dominant as this allows 
effective description of new coil sensitivities in terms of only the coefficients of these PC.  
Methods: A Philips 3T system was used with an 8 channel rigid head array coil. 12 volunteers were 
scanned (some twice, with repositioning) to generate 17 whole head complex 3D datasets. The acquisition 
was a low resolution field echo (TR/TE 10/3ms, 3 averages, resolution 128x64x64, zero filled to 
128x128x128.) The acquisition geometry was fixed in magnet co-ordinates with its centre at isocentre of the 

magnet. Total acquisition time for this volume was 122s. The position of the head array coil relative to 
isocentre was subject to positioning error of the bed but no explicit account was made for this. Coil sensitivity 
maps were generated from this data by dividing images from each coil element by the sum of squares of all 
the coils. After removing one dataset (to be used as the target data to test the method) A data matrix was 
constructed for a candidate single coil from the array (matrix size 16x ~2million) and the principal components 
determined. Test 1: The sensitivity of each individual coil of the omitted array data was fitted using a variable 
number of PC and difference between the native and fitted sensitivities determined as a function of the 
number of coefficients used. Test 2: A simulated image dataset undersampled by a factor 2 was made from 
the Shepp-logan phantom using the measured sensitivity of the omitted array coil data. This data was then 
reconstructed using the PC weights as free parameters for a single coil from the array (the others were 
correct) The PC weights (between 1 and 8 free parameters) were determined by minimizing inconsistency 
between multiple SENSE reconstructions based on different subgroups of the coils. This approach requires an 
over-determined system, more coils than the acceleration factor, but does not require a known gold 
standard[3,4] and so is consistent with a truly unknown sensitivity .   
 Results: Figure 1 shows the mean percent root-mean-square (%RMS) error between the fitted coil sensitivity 
and the measured sensitivity averaged over the whole image for a single example coil in test 1  as a function 
of the number of PC used. It can be seen that 99.5% accuracy is achieved with only 8 components. Averaging 
over all coils and repeated tests where each one of the 17 datsets were in turn excluded leads to exceeding 
99.5% accuracy for 8 PCs  Figure 2 shows parallel imaging reconstructions (left) and error (right) for an 
example of test 2 in which the unknown PC weights for 1(A) 2(B),5(C) and 8(D) components directly by 
optimizing the consistency of reconstructions from subsets of 4 coil elements. 5 PC are enough to virtually 
eliminate the residual error. The mean %RMS error in D was 0.7%   
Conclusions: Coil sensitivity data is generally measured over a whole volume using around 32000 complex 
Fourier terms per coil. This exploratory work indicates that with appropriate training data from other subjects 
this can be compressed to between 5 and 10 scalar terms per coil element while still achieving coil maps with 
a high degree of accuracy that is sufficient for effective PI reconstruction. The data used for this study was 
acquired using standard low resolution acquisitions, optimised for speed and is subject to errors due to 
imperfect cancellation of anatomy in regions where coil spatial variation is rapid. This small but significant 
perturbation appears to increase the number of PC required. Acquisition of high resolution training data may 
be expected to increase the compressibility further as it will exclude these errors.  Further compression may 
be achieved by treating all coils elements together in a single data matrix as variation is clearly coupled 
between coils. This apparatus in its current form is limited to fixed coils but if knowledge of the coil positions 
can be obtained (using MR visible markers for example) then freely positionable coils could also be included 
in this framework. Although 17 training datasets used were sufficient for this proof of principle it is likely more 
would be required in practice. It would be relatively straightforward to acquire a large number training sets as 
each is simply a volume dataset. It is envisaged that when a new coil is developed by a manufacturer a 
training set of several hundred scans could be rapidly acquired from several sites and this could form the 

training set to allow subsequent rapid coil calibration.   
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Figure 2. Parallel imaging reconstructions, 
acceleration factor =  2 number of coils = 4. One of 
the coils was treated as an unknown. A uses 1 PC, 
B, 2 PC, C, 5 PC and D 8PC. A’B’C’and D’ show 
the difference from a gold standard reconstruction 
where all coils were known. Full scale (white) in 
the difference images = 15% RMS deviation 

Figure 1. Mean %RMS error per pixel plotted as a 
function of number of principle components used to 

model a single coil.  

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008) 1277


